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Novel Optimal Trajectory Design in

UAV-Assisted Networks: A Mechanical
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Abstract

Unmanned aerial vehicles (UAVs), also known as drones, have already been widely implemented in

wireless networks for promoting network performance and enabling new services. To efficiently explore

the diversity introduced by the mobility of UAV, many efforts have been made in the design of the UAV

trajectory under various wireless scenarios. However, the continuity of a UAV trajectory in both time and

topology forces researchers to approximate the UAV trajectory by a discrete model, which always results in

a sub-optimal solution. To tackle the difficulty and obtain the optimal trajectory, in this work we introduce

an artificial potential field (APF) to reformulate the objective in trajectory design, with which the UAV

trajectory problem can be completely equivalent to a mechanical problem. In such mechanical problem, the

UAV trajectory is represented by an extremely soft and thin rope with variable density carrying UAV speed

information, and the original objective of optimizing the system performance is transformed to minimizing

the overall artificial potential energy on the rope. As a result, the rope in the optimal solution stays in a

state of equilibrium and the UAV trajectory can be equivalently optimized by designing the shape of a

rope under the APF via mechanical principles. We provide a case study to describe in detail the problem

equivalence, i.e., taking a single-user network as an example in which the throughput between UAV and the

user is considered as the objective performance. In particular, the optimal trajectory of a UAV is constructed

based on mechanical principles, while the global optimality is also rigorously proved and further confirmed

via simulations. Moreover, we also highlight that the novel strategy of constructing equivalent mechanical

problem has the possibilities to be extended to various UAV trajectory problems under different scenarios

with different performance optimization objectives.

Index Terms

UAV, trajectory design, artificial potential field (APF), mechanical equivalence, equilibrium state.

I. INTRODUCTION

With their great flexibility, unmanned aerial vehicles (UAVs) have enabled enormous potential

deployments in various domains, like cargo transport, environment monitoring, rescue assistance
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and mineral exploration [1]–[3]. Especially in wireless networks, the high mobility of UAVs helps

to avoid the possible blockage in wireless signal transportation [4], [5] and to construct wireless

channels with much higher quality, in comparison to those in traditional static networks [6]. To

exploit these advantages, the static deployment position of UAVs has been carefully designed to

raise the network performance, e.g., to enlarge the coverage for ground users while deploying UAVs

as a base station [7]–[9] and to enhance the reliability of wireless connection while applying UAVs

as a relay [10]. Moreover, also for wireless networks where UAVs have taken over communication

tasks, the trajectory of a mobile UAV is optimized (predesigned before starting the tasks) aiming at

maximizing the channel capacity [11]–[13], improving energy efficiency [14]–[17], and minimizing

the total task completion time [18]. However, for such UAV trajectory (pre)design, a huge difficulty

is that the trajectory is generally required to be continuous in both time and (the coordinates of the

UAVs) location, i.e., an infinite number of variables needs to be optimized at the same time.

To deal with this difficulty, the most popular strategy in the literature is to approximate the

continuous trajectory with a large number of discrete points while each two neighbour points are

constrained by a maximum distance [13]–[18]. The trajectory is then approximately optimized by

designing the positions of these discrete points. The obvious drawbacks of this strategy are: i. the

resulted trajectory solution is sub-optimal, and ii. the accuracy of the approximation is an issue,

while improving the accuracy significantly increases the complexity of the strategy. On the other

hand, as another trajectory design strategy, a successive-hover-fly (SHF) structure is inserted in

UAV trajectory [11], [12], [19], where the UAV is assumed to have hovering and flying behaviours,

i.e., it successively hovers at different hovering points with different hovering durations. Following

the SHF structure, the trajectory is designed via determining the positions of these hovering points

and corresponding hovering durations. Nevertheless, this strategy only works for scenarios where

the SHF structure assumption of the UAV trajectory does not lose the optimality of the original

objective of the design. In addition, although the complexity of the SHF-based trajectory design is

significantly reduced in comparison to the popular approximation strategy, its optimality/accuracy

is indeed sacrificed. This is due to the fact that the UAV is assumed to fly between hovering points

along straight lines in an SHF structure. Hence, the optimality only holds for a one-dimensional

(1D) special topology [19] and is definitely inaccurate for general scenarios where the UAV possibly

flies via an arc/curve trajectory. To the best of our knowledge, the global optimal UAV trajectory

has not been obtained or mathematically described in application scenarios with a general topology.

In this paper, we introduce a mechanical concept, namely the artificial potential field (APF), to
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the UAV trajectory design for a general UAV-enabled network with a general network topology. A

completely novel strategy is proposed, in which we first represent the design objective and the UAV

trajectory respectively by the APF and a physical rope with certain density carrying the information

of the UAV speed. As a result, the UAV trajectory design problem is equivalently transformed to a

mechanical problem minimizing the overall potential energy on the equivalent rope. Due to the fact

that the rope must stay in a state of equilibrium when the overall potential energy is minimized [20],

the UAV trajectory is optimally constructed by designing the rope shape based on the mechanical

principles in equilibrium. In the following sections, the design strategy is first illustrated via a

single-user example network, in which the throughput between UAV and user is considered as

objective to be maximized. Then the global optimal trajectory is mathematically constructed. After

that, we confirm the optimality of our proposed strategy in single-user network through simulations

and highlight the abundant possible extensions of the novel strategy in UAV trajectory designs. The

contributions of this paper are listed as follows:

• Physical Equivalence of Trajectory Design: In this work, we have proposed a novel strategy

for UAV trajectory design. For the first time, the UAV trajectory design problem is completely

equivalent to a physical problem with the assistance of APF. With the physical equivalence,

the UAV trajectory design problem becomes analyzable and the optimal solution can be

characterized via physical principles. The physical equivalence will definitely facilitate the

analysis and characterization of various trajectory design problem.

• Optimal Trajectory Solution for Single-User Network: To clarify the novel strategy, we

start with a single-user network. While targeting at maximizing the overall throughput between

UAV and the user, we characterize the UAV speed in optimal solution and based on physical

principles optimally constructed the optimal trajectory for UAV. Since most of the existing

strategies for UAV trajectory design can only guarantee a suboptimal solution, our work with

optimality has shown significant analytical contributions. Furthermore, the optimality has also

shown to be able to be extended in single-user network with many complex models and

objectives.

• Closed-Form Trajectory Solution: Beside of the optimality, for the first time, we also charac-

terize the closed-form expression for the continuous optimal UAV trajectory. With the closed-

form expression, the computational complexity for constructing the optimal trajectory is ex-

tremely lower. The extremely high efficiency will be much attractive in some latency-critical

scenarios.
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It should be mentioned and clarified that the concept of APF has been proposed in robot path

design [21] and then extended to some UAV path designs [22]. However, in these studies, the

APF has only applied as an approximation tool for the algorithms to approximately model the

obstacles constraints, i.e., avoiding collisions on the path (not a trajectory containing the location

and speed information at each time point), which does not introduce any mechanical significance on

the APF. This is totally different from our proposed strategy which equivalently totally transforms

the trajectory problem formulation to a mechanical one and obtains the optimal trajectory solution.

The rest of this paper is organized as follows. In Section II, we describe our considered example

single-user network and formulate a UAV trajectory design problem aiming at maximizing the

overall throughput. Next, the original problem is reformulated and completely equivalent to a

mechanical problem in Section III. Then, we equivalently focus on the mechanical problem and

construct the optimal solution for UAV trajectory in Section IV, which requires a design of an

optimal initial tension. In Section V, we provided an approach for obtaining the optimal initial

tension. Finally, the work is validated via simulations in Section VI and concluded in Section VII.

II. PROBLEM STATEMENT IN SINGLE-USER NETWORK

To present this novel UAV trajectory design strategy, we consider a single-user network as an

example, where a UAV is deployed as a mobile base station as shown in Fig. 1(a). The user is placed

at position D0 = (w0,x, w0,y) on the ground. The UAV is operated at a fixed altitude H > 0 being

responsible for wirelessly communicating with the ground user (GU). The horizontal position of

the UAV at time point t ≥ 0 is represented by (x(t), y(t)), which is clearly a continuous function in

time t. Moreover, the UAV is assumed to have a maximum speed limit V , i.e., ||(ẋ(t), ẏ(t))||2 ≤ V ,

∀t ≥ 0. Further note that we consider a rotary-wing UAV. Since the flying speed of rotary-wing

UAV can be generally adjusted in a very short time [14], [15], we assume the acceleration limit

for UAV is ignored. We denote by T the communication time duration between the UAV and the

GU, e.g., the duration could be allocated by a higher layer scheduler. Then, for any time point

t on the interested UAV trajectory, we have t ∈ [0, T ]. In particular, within this duration of T ,

the UAV is required to fly from a given starting point D1 = (w1,x, w1,y) to the given destination

D2 = (w2,x, y2,y), as implied in Fig. 1(a), which implies that

(x(0), y(0)) = D1 = (w1,x, w1,y), (x(T ), y(T )) = D2 = (w2,x, w2,y). (1)

We consider the scenario where ||D1 − D2||2 =
√

(w1,x − w2,x)2 + (w1,y − w2,y)2 ≤ V T holds,

otherwise the UAV is not capable of completing the flight from D1 to D2 within allocated time

duration T , i.e., the trajectory design is infeasible. Note that it is reasonable to assume given starting
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and ending points for UAV trajectory design, since the UAV is generally responsible for multi-tasks

in practice and for a certain task the starting and ending points highly rely on the previous and

next UAV tasks.

We refer to the channel gain to represent the channel quality. We adopt to apply the free-space

path loss model as in [23]–[25] due to the high probability of line-of-sight (LoS) between UAV and

GU in short range [6]. The channel gain at time t is given by h(x(t), y(t)) = β
r(x(t),y(t))2+H2 , where

β denotes the channel gain at a reference distant of 1m and r(x(t), y(t)) represents the horizontal

distance from point (x(t), y(t)) to the GU at position D0, i.e.,

r(x(t), y(t)) =
√

(x(t)− w0,x)2 + (y(t)− w0,y)2. (2)

For the wireless communication between the UAV and the GU, we denote by P the transmit

power from the GU in the uplink scenario (or from the UAV in the downlink case). Therefore, the

maximum transmission rate between the GU and the UAV at time t is formulated as

R(x(t), y(t)) = B log2(1 +
P

σ2

β

r(x(t), y(t))2 +H2
), (3)

where B represents the bandwidth and σ2 is the noise power level. As a result, the corresponding

total throughput over time duration T is given by

U({x(t), y(t)}) =

∫ T

0

R(x(t), y(t))dt. (4)

Following the above system model, we aim at maximizing the throughput U({x(t), y(t)}) by

optimizing the UAV trajectory {x(t), y(t)} under the maximum UAV speed limit V . Thus, the

original problem is described as

(OP) : max
{x(t),y(t)}

U({x(t), y(t)}) (5a)

s.t. ||(ẋ(t), ẏ(t))||2 ≤ V, ∀t ∈ [0, T ], (5b)

(x(0), y(0)) = (w1,x, w1,y), (5c)

(x(T ), y(T )) = (w2,x, w2,y). (5d)

Clearly, this original problem (OP) contains an infinite number of variables (x(t), y(t)), as there

are an infinite number of time points t in the trajectory {x(t), y(t)}. Moreover, the UAV trajectory

is continuous in both time and (the coordinates of the UAV’s) location, which makes the trajec-

tory design quite challenging. In addition, the objective function is apparently non-convex, which

implies that an efficient optimal solution is impossible to be obtained through convex optimization

technology.

To construct the optimal UAV trajectory, in the next section we introduce an equivalent mechanical
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D1D2(x,y)r(x,y) UAV

(a) Trajectory design in single-user network. (b) Rope equilibrium problem in a gravitational field.

Fig. 1. Examples of two kinds of problems.

problem for problem (OP) including a set of corresponding equivalent mechanical conceptions.

III. PROBLEM EQUIVALENCE IN MECHANICS

In this section, we first reformulate problem (OP), and subsequently construct a mechanical

problem with exactly the same form. By introducing the concept of artificial potential energy into

the trajectory design, we further show that problem (OP) can be solved by equivalently solving a

mechanical problem.

A. Reformulation of Problem (OP)

Let us consider a different way of representing a UAV trajectory. Note that at each time point

the UAV trajectory information can be actually fully determined if the UAV location (with moving

direction) and speed are given. Hence, the whole trajectory can be described by two groups of

information, namely path information and speed information. In particular, for any UAV trajectory

{x(t), y(t)}, the corresponding UAV path {x̂(s), ŷ(s)} can be defined as

(x̂(s), ŷ(s)) = (x(t), y(t)), while
∫ t

0

||(ẋ(τ), ẏ(τ))||2dτ = s. (6)

The path variable s denotes the path length from the given starting point D1 to (x̂(s), ŷ(s)) along

the trajectory {x(t), y(t)}. Clearly, we have s ∈ [0, S], where S =
∫ T

0
||(ẋ(τ), ẏ(τ))||2dτ is the total

path length of trajectory {x(t), y(t)}. Hence, the path {x̂(s), ŷ(s)} also starts from point D1 and

ends at point D2, so that (x̂(0), ŷ(0)) = D1 and (x̂(S), ŷ(S)) = D2.

On the other hand, the speed information can be expressed based on the path model. In particular,

for any given path variable s, there is a unique corresponding UAV speed v(s), which is given by

v(s) = ||(ẋ(τ), ẏ(τ))||2, while
∫ t

0

||(ẋ(τ), ẏ(τ))||2dτ = s. (7)

Hence, (8) holds, which ensures that the UAV finishes the flight within (allocated) time duration T .
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0

ds
v(s)

= T (8)

If there are hovering behaviours in the trajectory, where the UAV speed is zero, the above

reformulation as well as (8) with term 1
v(s)

also hold after introducing a Dirac delta function. For

instance, when the UAV has a hovering behaviour at point (x̂(s0), ŷ(s0)) with hovering duration

∆t > 0, the corresponding UAV speed v(s0) becomes zero and can be expressed as

v(s0) =
1

∆t
· 1

δ(0)
, (9)

where δ(0) is the Dirac delta function. Note that as δ(0) is indeed infinity, the actual UAV speed

v(s0) is still zero, which conforms to the hovering behaviour. However, it holds that∫ s0+

s0−

1

v(s)
ds = ∆t. (10)

Following the path and speed information models, the overall throughput is then described by

Û({x̂(s), ŷ(s)}, v(s)) =

∫ S

0

R(x̂(s), ŷ(s))
1

v(s)
ds. (11)

While substituting the trajectory variable {x(t), y(t)} in problem (OP) with the variable of the path

{x̂(s), ŷ(s)} and speed v(s), problem (OP) can be equivalently reformulated as

(P1) : max
{x̂(s),ŷ(s)},v(s),S

∫ S

0

R(x̂(s), ŷ(s))
1

v(s)
ds (12a)

s.t.
1

v(s)
≥ 1

V
, ∀s ∈ [0, S], (12b)∫ S

0

1

v(s)
ds = T, (12c)

(x̂(0), ŷ(0)) = (w1,x, w1,y), (12d)

(x̂(S), ŷ(S)) = (w2,x, w2,y). (12e)

Note that as implied in (10), although the value of 1
v(s)

may be infinite, the integral
∫ S

0
1
v(s)

ds

is bounded by T as shown in constraint (12c). The reformulated problem (P1) requires a joint

optimization of path variable {x̂(s), ŷ(s)}, speed v(s) and a total path length S, which is apparently

still strenuous to be addressed via typical optimization methods.

B. Variable-Density Rope Equilibrium Problem

Now, let us consider a mechanical problem in a space with a single force field. A mass point,

being with mass of M , is located at fixed position D0 = (w0,x, w0,y), i.e., the earth in Fig. 1(b).

The gravitational potential generated by the mass point at any other position (x̂′, ŷ′) is given by

R′(x̂′, ŷ′) = − GM

r(x̂′, ŷ′)
, (13)
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where G is the gravitational constant, and r(x̂′, ŷ′) denotes the distance from point (x̂′, ŷ′) to D0 as

defined in (2). In addition, a variable-density rope with mass of m is also placed in the space shown

in Fig. 1(b). The two ends of the rope are fixed at positions D1 = (w1,x, w1,y) and D2 = (w2,x, w2,y),

respectively. We assume that the rope is thin enough such that can be considered as a single line. We

denote by a continuous functions {x̂′(s), ŷ′(s)} the shape of the rope, where the variable s ∈ [0, S ′]

represents the partial rope length from D1 to the point (x̂′(s), ŷ′(s)). In addition, S ′ represents the

total rope length, which is also a variable as the line density of the rope is changeable. Moreover,

the line density ρ(s) of the rope is lower-bounded by a minimum ρmin > 0 (which guarantees the

existence of the rope, i.e.,
√

(w1,x − w2,x)2 + (w1,y − w2,y)2 · ρmin ≤ m). We further assume the

rope to be sufficiently soft, so that each rope segment can be concentrated on a single point. For

instance, with a given partial length s0 ∈ [0, S ′], if a mass point is formed at position (x̂′(s0), ŷ′(s0))

with mass m0, the corresponding line density is ρ(s0) = m0δ(0) with an infinite value. Although

the rope density is not upper-bounded, the definite integration over it (from 0 to the given S ′)

representing the weight of the corresponding rope segment is actually a constant, which is given by∫ S′

0

ρ(s)ds = m. (14)

As a result, the total gravitation potential energy of the rope is then given by

Û ′({x̂′(s), ŷ′(s)}, ρ(s)) =

∫ S′

0

R′(x̂′(s), ŷ′(s))ρ(s)ds. (15)

Therefore, to study the static rope appearance, a problem minimizing the total potential energy

through jointly optimizing the rope shape {x̂′(s), ŷ′(s)}, rope density ρ(s) and the total rope length

S ′, can be established as

(P2) : min
{x̂′(s),ŷ′(s)},ρ(s),S′

∫ S′

0

R′(x̂′(s), ŷ′(s))ρ(s)ds (16a)

s.t. ρ(s) ≥ ρmin, ∀s ∈ [0, S ′], (16b)∫ S′

0

ρ(s)ds = m, (16c)

(x̂′(0), ŷ′(0)) = (w1,x, w1,y), (16d)

(x̂′(S ′), ŷ′(S ′)) = (w2,x, w2,y). (16e)

According to the minimum total potential energy principle [20], if the rope has minimized the total

potential energy U ′({x̂′(s), ŷ′(s)}), i.e., being the optimal solution to (P2), it must already be in a

state of equilibrium (with zero net force and zero net torque). Otherwise, with effects of nonzero net

force or nonzero net torque, a better solution with lower potential energy will be found. Following
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UAV Trajectory Design =⇒ Equivalent Mechanical Problem

UAV trajectory =⇒ density-variable rope

UAV path {x̂(s), ŷ(s)} =⇒ rope shape {x̂′(s), ŷ′(s)}

UAV path length S =⇒ rope length S ′

UAV speed v(s) =⇒ reciprocal of rope line density 1
ρ(s)

UAV speed limit V =⇒ reciprocal of minimum line density 1
ρmin

allocated time duration T =⇒ rope mass m

maximum transmission rate
R(x, y)

=⇒ opposite of artificial potential field
−R′′(x, y)

overall throughput
Û({x̂(s), ŷ(s)}, v(s))

=⇒ opposite of artificial potential energy
−Û ′′({x̂′(s), ŷ′(s)}, ρ(s))

REFERENCES

[1] example reference

Fig. 2. Table for problem equivalence.

the mechanical rules in equilibrium [26], we can quickly obtain the optimal solution to (P2).

C. Problem Equivalence

By carefully comparing and examining problems (P1) and (P2), we can find a set of equivalences

between them, with which the trajectory design problem (P1) can be equivalent to a mechanical

problem. More specifically, the UAV path {x̂(s), ŷ(s)}, total path length S and UAV speed v(s) can

be equivalent to the rope shape {x̂′(s), ŷ′(s)}, total rope length S ′ and the reciprocal of rope line

density 1
ρ(s)

, respectively, as shown in Fig. 2. Moreover, the speed limit V and the total allocated

time T equivalent respectively to the reciprocal of minimum line density 1
ρmin

and the total rope

mass m. Accordingly, the maximum transmission rate R(x̂(s), ŷ(s)) and the overall throughput

Û({x̂(s), ŷ(s)}, v(s)) are corresponding to the opposite of gravitational potential −R′(x̂′(s), ŷ′(s))
and the opposite of total gravitation potential energy −Û ′({x̂′(s), ŷ′(s)}, ρ(s)), respectively. On the

other hand, different from these variable equivalences, the objectives of the two problems, i.e.,

the maximum transmission rate R(x̂(s), ŷ(s)) and the gravitational potential R′(x̂′(s), ŷ′(s)), have

completely different expressions, as shown in (3) and (13). Thus, problems (P1) and (P2) are not

equivalent, i.e., the objective of problem (P2) needs to be further reformulated.

Fortunately, as problem (P2) is constructed in a gravitational potential field R′(x, y), the maximum

transmission rate in (3) can be also presented via defining another artificial potential field R′′(x, y)

in the following way: for any given position (x, y),

R′′(x, y) = −R(x, y) = −B log2(1 +
P

σ2

β

r(x, y)2 +H2
), (17)

which results in the same objective expression as the one of problem (P1). Hence, problem (P1) is

equivalent to a variable-density rope equilibrium problem (P3) in the artificial potential field (APF)

given as follows
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(P3) : min
{x̂′(s),ŷ′(s)},ρ(s),S′

Û ′′({x̂′(s), ŷ′(s)}, ρ(s)) =

∫ S′

0

R′′(x̂′(s), ŷ′(s))ρ(s)ds (18a)

s.t. (16b), (16c), (16d), (16e).

So far, the original trajectory design problem has been equivalently transformed to a mechanical

problem, as described in Fig. 2. This motivates us to first rigorously solve the rope equilibrium

problem (P3) in the APF (17) by applying mechanical principles. Equivalently, the optimal trajectory

for problem (OP) can be subsequently constructed from the optimal solution to problem (P3).

IV. OPTIMAL TRAJECTORY CONSTRUCTION

To optimally solve problem (P3), in this section we first characterize the properties of the defined

APF and then implement mechanical principles to construct the optimal solution. In particular,

different construction strategies will be presented according to different total rope masses m, i.e.,

equivalently different allocated time duration T in the trajectory design problem.

A. APF Characterization

As a mechanical concept, a potential field has a corresponding force field, which is a vector field

and described by the negative gradient of a scalar potential function. In the considered problem

(P3), the generated force field of the proposed APF R′′(x, y) is given by

g(x, y) = −OR′′(x, y) = −dR′′(x, y)

dr(x, y)

 ∂r(x,y)
∂x

∂r(x,y)
∂y

 . (19)

Further note that it can be easily proved that the APF R′′(x, y) in (17) has a monotonic property 1.

Property 1. The APF R′′(x, y) in (17) is a strictly monotonically increasing function in r(x, y),

when r(x, y) ≥ 0.

Hence, we have dR′′(x,y)
dr(x,y)

> 0 when r(x, y) > 0. As r(x, y) denotes the distance from (x, y) to

D0, the force field g(x, y) is actually a vector towards a centre point D0 with an absolute value of

|g(x, y)| = dR′′(x, y)

dr(x, y)
=

2βBP

σ2 ln 2

r(x, y)

r(x, y)2 +H2

1

r(x, y)2 +H2 + βP
σ2

. (20)

This implies that the force field g(x, y) is a centralized vector field with the centre at D0. An

example force field can be observed in Fig. 3(a). In addition, the force field becomes zero only

when (x, y) is the same point as D0, i.e., r(x, y) = 0.

Same as the general force field, when a mass point is placed in the force field, a force will

act on the mass point. Similarly, when this force has done some work, the work will be equal to

the reduction of the artificial potential energy on the mass point. This again indicates that for the

optimal rope shape in problem (P3), which is corresponding to the optimal trajectory of problem
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(a) Optimal rope solution under APF with suffi-
cient rope mass m ≥ ρmin(r1 + r2).

HGU D0
D1D2 UAVVV r1r2hovering

(b) Equivalent optimal UAV trajectory with suffi-
cient allocated time T ≥ 1

V
(r1 + r2).

Fig. 3. Optimal solution equivalence with sufficient rope mass m ≥ ρmin(r1 + r2).

(P1), the overall force on it cannot do any more positive work. Otherwise, a rope shape with lower

artificial potential energy, namely a trajectory with higher throughput, will be found.

B. Optimal Solution with Sufficient Rope Mass

We first consider a case where the total rope mass m is sufficiently large. Due to the assumptions

of density variability and minimum line density constraint on the rope, a sufficiently large m signifies

that the rope has the potential to be sufficiently long, since the maximum rope length is limited

by m
ρmin

. Furthermore, a monotonically increasing property of APF (17) has already been shown

in Property 1. This indicates that a rope segment closer to point D0 results in a lower potential

energy. Thus, with sufficiently large rope mass, the optimal rope solution should approach to the

centre of APF as close as possible. In other words, in the optimal rope solution, the rope traverses

along straight lines with the minimum line density of ρmin from point D1 to D0 then to D2 and the

remaining mass forms a mass point at D0, as displayed in Fig. 3(a). Mathematically, the solution

can be formulated as

S ′? = r1 + r2, (21)

(x̂′?(s), ŷ′?(s)) =


(
s(w0,x−w1,x)

r1
+ w1,x,

s(w0,y−w1,y)

r1
+ w1,y

)
, s ∈ [0, r1],(

(s−r1)(w2,x−w0,x)

r2
+ w0,x,

(s−r1)(w2,y−w0,y)

r2
+ w0,y

)
, s ∈ (r1, S

′?],
(22)

ρ?(s) =

(m− ρmin(r1 + r2))δ(0), s = r1,

ρmin, s 6= r1,
(23)

where r1 = r(w1,x, w1,y) and r2 = r(w2,x, w2,y) respectively denote the distances from two ends

of rope, namely D1 and D2, to the center D0 of APF. The solution is feasible only when m ≥
ρmin(r1+r2). On the other hand, we can also mathematically prove the optimality of the constructed

solution, when m ≥ ρmin(r1 + r2), as stated in Lemma 1.
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Lemma 1. When m ≥ ρmin(r1 + r2), the rope defined by (21), (22) and (23) is the optimal solution

of problem (P3).

Proof. The proof is provided in Appendix A.

Equivalently, based on the optimal solution to problem (P3) defined by (21), (22) and (23), we can

further obtain the optimal trajectory of problem (OP) in the case of T ≥ 1
V

(r1 + r2). It is depicted

as in Fig. 3(b) with a hovering behaviour above the GU, and can be mathematically formulated as

(x?(t), y?(t)) =


(
V t(w0,x−w1,x)

r1
+ w1,x,

V t(w0,y−w1,y)

r1
+ w1,y

)
, t ∈ [0, r1

V
],

(w0,x, w0,y), t ∈ ( r1
V
, T − r2

V
],(

(V t−T )(w2,x−w0,x)

r2
+ w2,x,

(V t−T )(w2,y−w0,y)

r2
+ w2,y

)
, t ∈ (T − r2

V
, T ].

(24)

C. Optimal Solution with Insufficient Rope Mass

When m < ρmin(r1 + r2), the maximum rope length m
ρmin

is not enough to support the rope

passing the centre D0 of APF. Hence, for any sufficiently small rope segment in the corresponding

optimal rope solution, there is a non-zero force generated from APF acting on it. As a result, to

minimize the total artificial potential energy, each sufficiently small rope segment in the optimal

rope (solution) has extended itself towards the centre D0 as far as possible. In other words, the

optimal rope (solution) should have a constant line density ρmin, i.e., the optimal line density

ρ?(s) = ρmin, and accordingly an optimal total rope length S ′? = m
ρmin

. Otherwise, by extending

part of the rope towards D0, a better solution can be constructed. More rigorously, we have the

statement in Lemma 2.

Lemma 2. In the optimal rope solution {x̂′?(s), ŷ′?(s)}, ρ?(s) and S ′? of problem (P3), ∀s0 ∈
[0, S ′?], ρ?(s0) = ρmin holds, when (x̂′?(s0), ŷ′?(s0)) 6= D0 = (w0,x, w0,y).

Proof. The proof is provided in Appendix B.

When the rope mass is insufficient, the center point D0 will be unavailable for the rope. According

to the Lemma 2, the optimal rope solution of (P3) should always have the minimum line density,

i.e., ρ?(s) = ρmin, with insufficient rope mass. Thus, the remaining difficulty becomes to be the

design of optimal rope shape {x̂′?(s), ŷ′?(s)}.
Now let us assume that in the optimal solution {x̂′?(s), ŷ′?(s)}, the initial rope tension at point

D1 is given by Q?
0 and has an angle α? to the positive x-axis, as shown in Fig. 4(a). Then, we

further denote by Q(s) the rope tension at point (x̂′?(s), ŷ′?(s)). Note that in the optimal rope

shape, the forces acting on the segment from D1 to (x̂′?(s), ŷ′?(s)) must be balanced to guarantee
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(a) Optimal rope solution under APF with insuf-
ficient rope mass m < ρmin(r1 + r2).

HGU D0
D1D2 UAVV

(b) Equivalent optimal UAV trajectory with insuf-
ficient allocated time T < 1

V
(r1 + r2).

Fig. 4. Optimal solution equivalence with insufficient rope mass m < ρmin(r1 + r2).

the rope in the state of equilibrium. Thus, the net forces in the directions of x-axis and y-axis are

both zero, namely

|Q?
0| cosα? +

∫ s

0

|g(x̂′?(s0), ŷ′?(s0))|ρmin
w0,x − x̂′?(s0)

r(x̂′?(s0), ŷ′?(s0))
ds0︸ ︷︷ ︸

A∗1(s)

+|Q(s)|dx̂
′?(s)

ds
= 0, (25)

|Q?
0| sinα? +

∫ s

0

|g(x̂′?(s0), ŷ′?(s0))|ρmin
w0,y − ŷ′?(s0)

r(x̂′?(s0), ŷ′?(s0))
ds0︸ ︷︷ ︸

A∗2(s)

+|Q(s)|dŷ
′?(s)

ds
= 0. (26)

Combining (25) with (26), we have
dŷ′?(s)
dx̂′?(s)

=
A?2(s)

A?1(s)
. (27)

Moreover, from the definition of segment length s, we have∫ s

0

√
1 +

(
dŷ′?(s0)

dx̂′?(s0)

)2 dx̂′?(s0)

ds0

ds0 = s. (28)

By taking derivative on both sides of (28) in s, we obtain the following relationship√(
dx̂′?(s)

ds

)2

+

(
dŷ′?(s)

ds

)2

= 1. (29)

Therefore, the first derivatives of the optimal rope shape {x̂′?(s), ŷ′?(s)}, i.e., dx̂′?(s)
ds and dŷ′?(s)

ds , can

be uniquely obtained based on (25), (26), (27) and (29), which are more specifically given by

dx̂′?(s)
ds

=
−A?1(s)√

A?1(s)2 + A?2(s)2
,

dŷ′?(s)
ds

=
−A?2(s)√

A?1(s)2 + A?2(s)2
. (30)

So far, we have found that as long as the optimal rope tension Q?
0 at D1, including |Q?

0| and α?,

is known, the optimal rope solution to problem (P3) can be uniquely constructed based on (30). To

sum up, with initial value (x̂′?(0), ŷ′?(0)) = D1 = (w1,x, w1,y), the optimal solution of (P3) with

m < ρmin(r1 + r2) is constructed as
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(a) Constructed ropes with different absolute
values of initial tension at D1.

(b) Constructed ropes with different initial tension
angles and already optimized absolute value.

Fig. 5. Monotonic effects of initial rope tension at D1 on the constructed ropes.

(x̂′?(s), ŷ′?(s)) = (

∫ s

0

−A?1(s)√
A?1(s)2 + A?2(s)2

ds+ w1,x,

∫ s

0

−A?2(s)√
A?1(s)2 + A?2(s)2

ds+ w1,y), (31)

ρ?(s) = ρmin, ∀s ∈ [0, S ′?
∆
=

m

ρmin

]. (32)

Equivalently, the optimal UAV trajectory {x?(t), y?(t)} for original problem (OP) in case of

T < r1+r2
V

can be constructed, as shown in Fig. 4(b). It is given by

(x?(t), y?(t)) = (x̂′?(V t), ŷ′?(V t)), where V = 1/ρmin. (33)

V. OPTIMAL INITIAL ROPE TENSION DESIGN

So far, the optimal solution of UAV trajectory has been constructed. However, from the above

results, we learn that to obtain the optimal solution with insufficient rope mass m < ρmin(r1 + r2),

it is essential to design the optimal rope tension Q?
0 at D1, Actually, the optimal rope tension can

be quickly obtained by simply greedily searching the optimal values of two parameters, i.e., the

absolute value Q0 and the tension angle α. More specifically, with a fixed angle α of initial tension

at D1, a larger absolute value Q0 makes the constructed rope always closer to the centre D0, as

implied in Fig. 5(a). Therefore, for any given angle α, there exists a unique absolute value Q?
0(α)

making the rope exactly pass the destination D2. More importantly, this value Q?
0(α) can be simply

found by fixing α and greedily searching over the absolute value Q0. On the other hand, with

Q0 = Q?
0(α), the rope length between D1 and D2 is actually monotonically increasing with respect

to the angle α, as shown in Fig. 5(b). Hence, with given Q0 = Q?
0(α), the optimal initial tension

Q?
0 can be uniquely found by further greedily searching over angle α.

In this section, we provide rigorous proofs for the above stated monotonic impacts of absolute

value Q0 and tension angle α, in purpose of guaranteeing the global optimality of our design. To

start with, we first derive a closed-form rope shape expression in the polar coordinate system, based

on which the effect analysis for initial rope tension can be significantly facilitated. Then, the impact

of the initial rope tension on constructed rope will be addressed subsequently.
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A. Closed-Form Expression in Polar Coordinate System

We first consider a polar coordinate system (r, ϕ) with original point defined as the center D0 of

APF, as shown in Fig. 6(a). In the polar coordinate system, the coordinates of two rope endpoints,

namely points D1 and D2 with Cartesian coordinates (w1,x, w1,y) and (w2,x, w2,y), are respectively

given by (r1, ϕ1) and (r2, ϕ2). Without loss of generality, we assume ϕ2 > ϕ1. In addition, the rope

shape {x̂′(s), ŷ′(s)} is transformed to {r(s), ϕ(s)}, according to the following relations

x̂′(s) = r(s) cosϕ(s), ŷ′(s) = r(s) sinϕ(s). (34)

Note that with any initial rope tension Q0 at D1, i.e., including an absolute value Q0 = |Q0|
and angle α, the rope shape {x̂′(s), ŷ′(s)} can be uniquely determined by replacing |Q?

0| and α?

respectively with |Q0| and α given in (25) and (26). An example generated rope shape (r(s), ϕ(s))

is shown in Fig. 6(a). It should be mentioned that with a random initial rope tension Q0, the

generated rope shape does not necessarily pass through the other endpoint D2.

Note that the optimal rope shape {x̂′?(s), ŷ′?(s)} is strictly limited in the triangle area formed

by Di, i ∈ {0, 1, 2}. Accordingly, the angle α? of optimal tension Q?
0 is bounded in interval

[arctan w2,y−w1,y

w2,x−w1,x
, ϕ1]. Therefore, we assume α ∈ [arctan w2,y−w1,y

w2,x−w1,x
, ϕ1].

In the polar coordinate system, for any given initial rope tension Q0 at D1, we have the following

relation for the generated rope shape {r(s), ϕ(s)},
A2(s)

A1(s)
=

dx̂′(s)
dŷ′(s)

=
d (r(s) cosϕ(s))

d (r(s) sinϕ(s))
=

r(s)dϕ(s)
dr(s) + tanϕ(s)

1− r(s)dϕ(s)
dr(s) tanϕ(s)

, (35)

where A1(s) and A2(s) are modified equations (25) and (26) by replacing |Q?
0| and α? respectively

with |Q0| and α. The expressions of A1(s) and A2(s) in the polar coordinate system are given by

A1(s) = Q0 cosα +

∫ s

0

g(r(s0))ρmin(− cosϕ(s0))ds0, (36)

A2(s) = Q0 sinα +

∫ s

0

g(r(s0))ρmin(− sinϕ(s0))ds0, (37)

where g(r(s)) is defined as the absolute value of fore field with distance to center point r(s), i.e.,

g(r(s)) = |g(x, y)|, when
√
x2 + y2 = r(s). And from the equation (35), we can also obtain that

r(s)
dϕ(s)

dr(s)
=

A2(s)
A1(s)

− tanϕ(s)

1 + A2(s)
A1(s)

tanϕ(s)
. (38)

In the following, in order to gain a deep insight of the relation between r(s) and ϕ(s) with

given Q0, we make efforts to construct an equation containing only variables r(s) and ϕ(s). To

facilitate the formulation of generated rope shape in the polar coordinate system, we first introduce

a Lemma 3 regarding the relation between A1(s) and A2(s) with a given Q0.
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Lemma 3. For a given Q0, in the generated {r(s), ϕ(s)} from (38), the value of A1(s)r(s) sinϕ(s)−
A2(s)r(s) cosϕ(s) is constant in s. Namely,

A1(s)r(s) sinϕ(s)− A2(s)r(s) cosϕ(s) = r1Q0 sin(ϕ1 − α)
∆
= Q̂0. (39)

Proof. We prove the lemma by studying the first-order derivative of the term A1(s)r(s) sinϕ(s)−
A2(s)r(s) cosϕ(s) in s, which is obtained as

dA1(s)r(s) sinϕ(s)− A2(s)r(s) cosϕ(s)

ds
= g(r(s))ρmin(− cosϕ(s))r(s) sinϕ(s)− g(r(s))ρmin(− sinϕ(s))r(s) cosϕ(s)

+(A1(s) sinϕ(s)− A2(s) cosϕ(s))
dr(s)

ds
+ (A1(s) cosϕ(s) + A2(s) sinϕ(s))r(s)

dϕ(s)

ds
. (40)

Considering the relation (38) between dr(s)
ds and dϕ(s)

ds , the above derivative becomes zero, and the

constant value of A1(s)r(s) sinϕ(s) − A2(s)r(s) cosϕ(s) can be derived to be equal to its initial

value A1(0)r(0) sinϕ(0)− A2(0)r(0) cosϕ(0) = r1Q0 sin(ϕ1 − α)
∆
= Q̂0.

Remark. Note that Lemma 3 substantially represents the zero net torque requirement in the equi-

librium state. The torque is taken with respect to the origin point and the value Q̂0 is actually the

resulted torque by Q0 with respect to the origin D0. As the force field in APF is always towards

origin D0, the torque resulted from Q(s), namely A1(s)r(s) sinϕ(s)−A2(s)r(s) cosϕ(s), remains

to be a constant.

Combining (35) and (39), we find that A1(s) and A2(s) can be completely represented by r(s),

ϕ(s) and dϕ(s)
dr(s) , namely

A1(s) = −
Q̂0

(
1− r(s)dϕ(s)

dr(s) tanϕ(s)
)

r(s)2 dϕ(s)
dr(s)

1
cosϕ(s)

, A2(s) = −
Q̂0

(
r(s)dϕ(s)

dr(s) + tanϕ(s)
)

r(s)2 dϕ(s)
dr(s)

1
cosϕ(s)

. (41)

Then, by taking derivative of both sides of (38) to s, we can correspondingly get an expression of
d(r(s) dϕ(s)

dr(s) )
ds which contains the function term of A1(s) and A2(s). However, according to (41), the

expression of
d(r(s) dϕ(s)

dr(s) )
ds can be simplified after a series of reformulation. Finally, we have

d
(
r(s)dϕ(s)

dr(s)

)
ds

= −dϕ(s)

ds

(
(r(s)

dϕ(s)

dr(s)
)2 + 1

)
− (r(s)

dϕ(s)

dr(s)
)2 g(r(s))ρminr(s)

Q̂0

, (42)

which does not contain any terms of A1(s) and A2(s). In the same way, we obtain that

dr(s)
ds

=
−A1(s) cosϕ(s)− A2(s) sinϕ(s)√

A1(s)2 + A2(s)2
=

sgn(dr(s)
ds )√

(r(s)dϕ(s)
dr(s) )2 + 1

, (43)

where sgn(dr(s)
ds ) indicates the sign of dr(s)

ds . Thus, by combining the above two equations, we have
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d
(
r(s)dϕ(s)

dr(s)

)
dr(s)

= −dϕ(s)

dr(s)

((
r(s)

dϕ(s)

dr(s)

)2

+ 1

)

−sgn
(

dr(s)
ds

)(
r(s)

dϕ(s)

dr(s)

)2
√(

r(s)
dϕ(s)

dr(s)

)2

+1
g(r(s))ρminr(s)

Q̂0

. (44)

Note that besides r(s) and ϕ(s), the only remaining variable in the above equation is the variable s

in the discontinuous function sgn(dr(s)
ds ). To further simplify the equation, we first discuss the sign

of dϕ(s)
ds . Following the same process of obtaining dr(s)

ds , dϕ(s)
ds is given by

dϕ(s)

ds
=
A1(s)r(s) sinϕ(s)− A2(s)r(s) cosϕ(s)

r(s)2
√
A1(s)2 + A2(s)2

=
r1Q0 sin(ϕ1 − α)

r(s)2
√
A1(s)2 + A2(s)2

. (45)

It is already assumed that the angle α is limited in interval α ∈ [arctan w2,y−w1,y

w2,x−w1,x
, ϕ1] and we have

arctan w2,y−w1,y

w2,x−w1,x
> ϕ1−π to make sure ϕ2 > ϕ1. Thus, we always have dϕ(s)

ds > 0,
d(r(s) dϕ(s)

dr(s) )
ds < 0 and

correspondingly, sgn
(

dr(s)
ds

)
= sgn

(
dr(s)
dϕ(s)

)
sgn
(

dϕ(s)
ds

)
= sgn

(
dr(s)
dϕ(s)

)
. Subsequently, the equation

(44) can be reformulated as a form with only variables r(s) and ϕ(s) involved, namely

d
(√

( 1
r(s)

dr(s)
dϕ(s)

)2 + 1
)

dr(s)
=

1

r(s)

√(
1

r(s)

dr(s)
dϕ(s)

)2

+1 +
g (r(s)) ρminr(s)

Q̂0

. (46)

We observe that the equation (46) is actually a linear differential equation of

√(
1
r(s)

dr(s)
dϕ(s)

)2

+ 1

with respect to r(s). According to [27], we can build the solution for equation (46) as√(
1

r(s)

dr(s)
dϕ(s)

)2

+ 1 =
ρmin

Q̂0

r(s)

∫ r(s)

r1

g(r0)dr0 +
r(s)

r1

1

sin(ϕ1 − α)
, (47)

where the initial value is
√

( 1
r(s)

dr(s)
dϕ(s)

)2+1 s=0 = 1
sin(ϕ1−α)

. And a more visualized result for dr(s)
dϕ(s)

is

dr(s)
dϕ(s)

= r(s)

√√√√(ρmin

Q̂0

r(s)

∫ r(s)

r1

g(r0)dr0 +
r(s)

r1

1

sin(ϕ1 − α)

)2

− 1. (48)

Moreover, with the conclusions dϕ(s)
ds > 0 and

d(r(s) dϕ(s)
dr(s) )

ds < 0, we obtain that

d
(

dr(s)
dϕ(s)

)
dϕ(s)

=
1

dϕ(s)
ds

dϕ(s)

ds
−

d
(
r(s)dϕ(s)

dr(s)

)
ds

 1

r(s)(dϕ(s)
dr(s) )2

> 0, (49)

so that r(s) is proved to be convex in ϕ(s). Then based on (48), we can directly focus on the

variation tendency of r(s) to ϕ(s). Note that different initial value and sign of dr(s)
dϕ(s)

at s = 0 will

lead to different variation tendency of r(s). Therefore, we next formulate the closed-form expression

of ϕ(s) in r(s), respectively under two cases regarding the initial sign of dr(s)
dϕ(s)

.

• When dr(s)
dϕ(s) s=0 ≥ 0, as r(s) is convex in ϕ(s), we have ∀s ≥ 0, dr(s)

dϕ(s)
≥ 0 holds and both
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(a) Polar coordinate system and an example of gener-
ated rope shape from Q0.

(b) Effect of Q0 on the generated rope shape with
different given α.

Fig. 6. Polar coordinate system and the monotonic effect of rope tension.

dr(s)
dϕ(s)

and r(s) are continuously increasing with respect to ϕ(s). As a result, we have

ϕ(s)− ϕ1 =

∫ r(s)

r1

dr0

r0

√(
ρmin

Q̂0
r0

∫ r0
r1
g(r′0)dr′0 + r0

r1
1

sin(ϕ1−α)

)2

− 1

. (50)

• When dr(s)
dϕ(s) s=0 < 0, as r(s) is convex in ϕ(s), dr(s)

dϕ(s)
is also continuously increasing in ϕ(s).

Therefore, with ϕ(s) increasing, r(s) will continuously decrease to a minimum rmin where
dr(s)
dϕ(s) r(s)=rmin

= 0, and then continuously increase from the minimum. According to (48), the

term ρmin

Q̂0
r(s)

∫ r(s)
r1

g(r0)dr0+ r(s)
r1

1
sin(ϕ1−α)

has a positive initial value 1
sin(ϕ1−α)

and is decreasing

in r(s). Thus, the minimum rmin can be uniquely obtained by solving the following equation
ρmin

Q̂0

rmin

∫ rmin

r1

g(r0)dr0 +
rmin

r1

1

sin(ϕ1 − α)
= 1. (51)

To sum up, the relation between ϕ(s) and r(s) can be described as

ϕ(s)−ϕ1 =



∫ r(s)
r1

−dr0

r0

√(
ρmin
Q̂0

r0
∫ r0
r1

g(r′0)dr′0+
r0
r1

1
sin(ϕ1−α)

)2

−1

, when dr(s)
dϕ(s)

≤ 0,

2H(Q̂0, α) +
∫ r(s)
r1

dr0

r0

√(
ρmin
Q̂0

r0
∫ r0
r1

g(r′0)dr′0+
r0
r1

1
sin(ϕ1−α)

)2

−1

, when dr(s)
dϕ(s)

> 0,
(52)

where H(Q̂0, α) denotes difference of ϕ(s) when s varies from s = 0 to s = s0 when

r(s0) = rmin, i.e., H(Q̂0, α) =
∫ rmin

r1

−dr0

r0

√(
ρmin
Q̂0

r0
∫ r0
r1

g(r′0)dr′0+
r0
r1

1
sin(ϕ1−α)

)2

−1

.

Note that the relations (50) and (52) between r(s) and ϕ(s) hold in the generated rope shape only

when α ∈ (ϕ1 − π, ϕ1), which makes sin(ϕ1 − α) > 0, namely dϕ(s)
ds > 0 according to (45). More

specifically, when α ∈ [ϕ1 − π
2
, ϕ1), the relation between r(s) and ϕ(s) is represented by (50),

while (52) holds when α ∈ (ϕ1 − π, ϕ1 − π
2
).

B. Effect Analysis for Initial Rope Tension

Based on the above characterizations/discussions in the polar coordinate system, in the following

we study the effect of tension value Q0 on the generated rope shape, as illustrated in Lemma 4.
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Lemma 4. With a fixed tension angle α ∈ (ϕ1 − π, ϕ1), in the generated rope shape {r(s), ϕ(s)},
∀ϕ0 > ϕ1, the corresponding r(s) when ϕ(s) = ϕ0 is monotonically decreasing with respect to

tension value Q0.

Proof. As indicated by (39), with given α, Q̂0 is positively proportional to Q0. For facilitation,

we study the effect of Q̂0 instead, and the same conclusion will be proved. From the previous

discussions, we have different closed-form relations between r(s) and ϕ(s), i.e., equations (50)

and (52), corresponding to different initial value of dr(s)
dϕ(s)

. Hence, the effect of Q̂0 should also be

investigated in two different cases.

Case I: dr(s)
dϕ(s) s=0 ≥ 0. ∀ϕ0 > ϕ1, when ϕ(s) = ϕ0, we have r(s) > r1 and∫ r(s)

r1

dr0

r0

√(
ρmin
Q̂0

r0
∫ r0
r1

g(r′0)dr′0+
r0
r1

1
sin(ϕ1−α)

)2

−1

= ϕ0 − ϕ1. As the right side of the above equation is

a constant, by taking differentiation, we can obtain the relation between r(s) and Q̂0:
dr(s)

dQ̂0

= − H0(Q̂0, α, r1, r(s))
1

r(s)

√(
ρmin
Q̂0

r(s)
∫ r(s)
r1

g(r′0)dr′0+
r(s)
r1

1
sin(ϕ1−α)

)2

−1

. (53)

where the expression H0(Q̂0, α, r
′, r′′) is defined as the following form for simplification:

H0(Q̂0, α, r
′, r′′) =

∫ r′′

r′

(
ρmin

Q̂0
r0

∫ r0
r1
g(r′0)dr′0 + r0

r1
1

sin(ϕ1−α)

)(
ρmin

Q̂2
0

r0

∫ r0
r1
g(r′0)dr′0

)
r0

(√(
ρmin

Q̂0
r0

∫ r0
r1
g(r′0)dr′0 + r0

r1
1

sin(ϕ1−α)

)2

− 1

)3 dr0 (54)

Therefore, as r(s) > r1 and r0 ∈ [r1, r(s)], we have H0(Q̂0, α, r1, r(s)) > 0 and dr(s)
dQ̂0

< 0 for

ϕ(s) = ϕ0. A larger Q̂0, i.e., larger Q0, results in a smaller r(s) for a given ϕ(s).

Case II: dr(s)
dϕ(s) s=0 < 0. If ϕ0 > ϕ1 makes dr(s)

dϕ(s) ϕ(s)=ϕ0 ≤ 0, according to (52), when ϕ(s) = ϕ0,
dr(s)
dQ̂0

can be obtained to be the same form as (53). Differently, we have r(s) < r1 and r0 ∈ [r(s), r1],

which still result in H0(Q̂0, α, r1, r(s)) > 0 and dr(s)
dQ̂0

< 0 for ϕ(s) = ϕ0.

If ϕ0 > ϕ1 makes dr(s)
dϕ(s) ϕ(s)=ϕ0 > 0, according to (52), when ϕ(s) = ϕ0, dr(s)

dQ̂0
is given by

dr(s)

dQ̂0

= −
2dH(Q̂0,α)

dQ̂0
+H0(Q̂0, α, r1, r(s))

1

r(s)

√(
ρmin
Q̂0

r(s)
∫ r(s)
r1

g(r′0)dr′0+
r(s)
r1

1
sin(ϕ1−α)

)2

−1

. (55)

Obviously, based on previous discussions, if dH(Q̂0,α)

dQ̂0
≥ 0 for given α, we will get a conclusion of

dr(s)
dQ̂0

< 0 for ϕ(s) = ϕ0, ∀ϕ0 > 0 for all cases. And r(s) when ϕ(s) = ϕ0 can be proved to be

monotonically decreasing with respect to Q̂0, i.e., monotonically decreasing with respect to Q0.

Finally, we prove that dH(Q̂0,α)

dQ̂0
≥ 0 holds for given α to finalize the proof. At first, rmin is

dependent in Q̂0 according to (51), and the derivative is formulated as
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drmin

dQ̂0

=

ρmin

Q̂2
0

rmin

∫ rmin

r1
g(r0)dr0

1
rmin

+ ρmin

Q̂0
rming(rmin)

< 0, as rmin < r1. (56)

Then, the derivative of function H(Q̂0, α) over Q̂0 is formulated as

dH(Q̂0, α)

dQ̂0

=
−1

rmin

√(
ρmin

Q̂0
rmin

∫ rmin

r1
g(r0)dr0+ rmin

r1
1

sin(ϕ1−α)

)2

−1

drmin

dQ̂0

−H0(Q̂0, α, r1, rmin). (57)

Taking the relation between rmin and Q̂0 (51) into account, dH(Q̂0,α)

dQ̂0
is indeed the difference

between two positive infinite values. However, we can still get the sign of dH(Q̂0,α)

dQ̂0
via some tricks.

By introducing a variable z

z(r0) =

(
ρmin

Q̂0

r0

∫ r0

r1

g(r′0)dr′0 +
r0

r1

1

sin(ϕ1 − α)

)2

− 1, (58)

and a sufficiently small value ε for representing
(
ρmin

Q̂0
rmin

∫ rmin

r1
g(r0)dr0 + rmin

r1
1

sin(ϕ1−α)

)2

− 1, we

have the reformulated dH(Q̂0,α)

dQ̂0
as

dH(Q̂0, α)

dQ̂0

= lim
ε→0+

(
−1

rmin

√
ε

drmin

dQ̂0

−
∫ ε

z(r1)

1
2r0

ρmin

Q̂2
0

r0

∫ r0
r1
g(r′0)dr′0

ρmin

Q̂0

∫ r0
r1
g(r′0)dr′0+ 1

r1
1

sin(ϕ1−α)
+ ρmin

Q̂0
r0g(r0)

z−
3
2 dz

)
, (59)

where r0 is also a function of z and z(rmin) = 0. Next, we compare it with ε−1, namely

lim
ε→0+

−1
rmin
√
ε

drmin

dQ̂0
−
∫ ε
z(r1)

1
2r0

ρmin
Q̂2
0
r0
∫ r0
r1

g(r′0)dr′0
ρmin
Q̂0

∫ r0
r1

g(r′0)dr′0+ 1
r1

1
sin(ϕ1−α)

+
ρmin
Q̂0

r0g(r0)
z−

3
2 dz

ε−1

= lim
ε→0+

−√ε
rmin

drmin

dQ̂0

+

√
ε

2rmin

ρmin

Q̂2
0

rmin

∫ rmin

r1
g(r′0)dr′0

ρmin

Q̂0

∫ rmin

r1
g(r′0)dr′0 + 1

r1
1

sin(ϕ1−α)
+ ρmin

Q̂0
rming(rmin)


= lim

ε→0+

−√ε
2rmin

drmin

dQ̂0

= 0+, as
drmin

dQ̂0

< 0. (60)

As limε→0+
1
ε

= +∞, it is eventually proved that dH(Q̂0,α)

dQ̂0
≥ 0 holds for a fixed angle α.

To more intuitively show the effects of initial tension value Q0 with given α, examples for both

Case I and Case II are displayed in Fig. 6(b). For Case I, two rope shapes are generated by Q1

and Q2 (|Q2| > |Q1|) with α = α1. And the examples of the generated rope shapes by Q3 and

Q4 (|Q4| > |Q3|) with α = α2 belong to Case II.

According to Lemma 4, for given α, a larger value of Q0 always results in a generated rope

closer to D0. Thus, through greedily searching of Q0, the unique corresponding Q0 = Q∗0(α) can

be found, with which the generated rope {r(s), ϕ(s)} passes through the destination D2(r2, ϕ2).
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C. Effect of α on Generated Rope Shape

On the other hand, the angle α for initial rope tension can also result in a monotonic effect on

the generated rope. Regarding the effect of initial tension angle α, we have the following Lemma 5.

In other word, with a fixed Q̂0, i.e., fixed value of r1Q0 sin(ϕ1 − α), a larger initial tension angle

α results in a rope shape closer to the center D0.

Lemma 5. With a fixed value of Q̂0 (not Q0) in the initial tension Q0, in the generated rope shape

{r(s), ϕ(s)}, ∀ϕ0 > ϕ1, the corresponding r(s) when ϕ(s) = ϕ0 is monotonically decreasing with

respect to the tension angle α ∈ (ϕ1 − π, ϕ1).

Proof. According to the closed-form expression of generated rope shape in (50) and (52), we prove

the lemma by distinguishing the following two cases.

Case I: When α ∈ (ϕ1 − π, ϕ1 − π
2
], we have dr(s)

dϕ(s) s=0 ≥ 0, so that the relation (50) holds.

Similarly, with a fixed value of Q̂0, we have dr(s)
d sin(ϕ1−α)

described as

dr(s)
d sin(ϕ1 − α)

= − H1(Q̂0, α, r1, r(s))
1

r(s)

√(
ρmin
Q̂0

r(s)
∫ r(s)
r1

g(r′0)dr′0+
r(s)
r1

1
sin(ϕ1−α)

)2

−1

. (61)

where the expression H1(Q̂0, α, r
′, r′′) is defined as

H1(Q̂0, α, r
′, r′′) =

∫ r′′

r′

(
ρmin

Q̂0
r0

∫ r0
r1
g(r′0)dr′0 + r0

r1
1

sin(ϕ1−α)

)(
r0
r1

1
sin2(ϕ1−α)

)
r0

(√(
ρmin

Q̂0
r0

∫ r0
r1
g(r′0)dr′0 + r0

r1
1

sin(ϕ1−α)

)2

− 1

)3 dr0 (62)

Therefore, when ϕ(s) = ϕ0 > ϕ1, we have r(s) > r1 and accordingly dr(s)
d sin(ϕ1−α)

< 0, i.e.,

dr(s)
dα

=
dr(s)

d sin(ϕ1 − α)
(− cos(ϕ1 − α)) < 0. (63)

Case II: When α ∈ (ϕ1 − π
2
, ϕ1), we have (52) holds. If ϕ0 > ϕ1 makes dr(s)

dϕ(s) ϕ(s)=ϕ0 ≤ 0,

according to (52), when ϕ(s) = ϕ0, dr(s)
d sin(ϕ1−α)

can be obtained to be the same form as (61).

Differently, we have r(s) < r1, which results in dr(s)
d sin(ϕ1−α)

> 0, namely dr(s)
dα < 0 since cos(ϕ1−α) >

0 holds for α ∈ (ϕ1 − π
2
, ϕ1).

If ϕ0 > ϕ1 makes dr(s)
dϕ(s) ϕ(s)=ϕ0 > 0, according to (52), when ϕ(s) = ϕ0, with a fixed Q̂0,

dr(s)
d sin(ϕ1−α)

can be obtained as
dr(s)

d sin(ϕ1 − α)
= −H2(Q̂0, α, r(s)) +H1(Q̂0, α, 2r(s), r(s))

1

r(s)

√(
ρmin
Q̂0

r(s)
∫ r(s)
r1

g(r′0)dr′0+
r(s)
r1

1
sin(ϕ1−α)

)2

−1

. (64)

where for simplified denotation, the function H2(Q̂0, α, r(s)) is defined as
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H2(Q̂0, α, r(s)) =
−2

rmin

√(
ρmin

Q̂0
rmin

∫ rmin

r1
g(r0)dr0 + rmin

r1
1

sin(ϕ1−α)

)2

− 1

drmin

d sin(ϕ1 − α)

+H1(Q̂0, α, rmin, r1) +H1(Q̂0, α, rmin, 2r(s)), (65)

drmin

d sin(ϕ1 − α)
=

rmin

r1
1

sin2(ϕ1−α)

1
rmin

+ ρmin

Q̂0
rming(rmin)

> 0. (66)

Following the same process in the proof of Lemma 4, by introducing z(r) in (58) and a variable ε,

we can find that H2(Q̂0, α, r(s)) ≤ 0. Since H1(Q̂0, α, 2r(s), r(s)) < 0 holds, we can obtain that
dr(s)

d sin(ϕ1−α)
> 0 holds for given Q̂0. Subsequently, we obtain that dr(s)

dα < 0 for any given Q̂0.

To sum up, for any given fixed Q̂0, it holds that dr(s)
dα < 0, ∀α ∈ (ϕ1−π, ϕ1), i.e., r(s) is strictly

monotonically decreasing with respect to α.

D. Relation Between α and Total Rope Length

Based on Lemma 4 and Lemma 5 which respectively show the monotonic effects of initial tension

value Q0 and initial tension angle α on the generated shape, we can obtain a monotonic relation

between the tension angle α and the total rope length S. This relation is described in Lemma 6.

Lemma 6. When the tension value is Q0 = Q?
0(α), so that the generated rope shape (r(s), ϕ(s))

starts from D1(r1, ϕ1) and ends at D2(r2, ϕ2), the total rope length between D1 and D2 is strictly

monotonically increasing with respect to α.

Proof. We prove the lemma in the following way with three steps: i. first propose a concept of

unlimited rope shape, then ii. find the relation between generated ropes with the same endpoints

with the assistance of unlimited rope shape (namely no further intersection points between different

generated ropes with the same endpoints), and iii. finally complete the proof based on a property

of convex bodies.

We start with introducing the concept of unlimited rope shape. Note that given an initial tension

Q0 at point D1, the rope shape can be generated on both left side and right side of line D0D1.

More specifically, for the sides ϕ > ϕ1 and ϕ < ϕ1, the balanced rope shapes can be generated

respectively with initial rope tensions Q0 and −Q0. An example of created unlimited rope shape

is shown in Fig. 7(a). In other words, with any given initial rope tension Q0, a unique smooth rope

shape without endpoints can be correspondingly created.

Then, we prove a statement that for any two different created unlimited rope shapes, there are

at most two intersection points. We assume two created unlimited rope shapes have an intersection

point D3(r3, ϕ3), and the corresponding two rope tensions at D3 are respectively Q1 and Q2

with their tensions Q1, Q2 and angles α1, α2 ∈ (ϕ3 − π, ϕ3), α1 ≤ α2. Accordingly, we have
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(a) (b)

(c) (d)

Fig. 7. Example figures for proof of Lemma 6. (a) An example of creating unlimited rope shape. (b) An example of symmetry. (c)
An example of unbalanced rope segment within non-convex area X. (d) Effect of initial angle α on the total rope length S.

Q̂1 = r3Q1 sin(ϕ3 − α1) and Q̂2 = r3Q2 sin(ϕ3 − α2). Then, we show that there is no intersection

point in at least one side, i.e., in either the side of ϕ > ϕ3 or ϕ < ϕ3. In particular, we show this

by distinguishing the following these cases satisfying α1 ≤ α2.

• If α1 < α2 and Q̂1 ≤ Q̂2 (Q1 ≤ Q2 sin(ϕ3−α2)
sin(ϕ3−α1)

), according to Lemma 4 and Lemma 5, we have

that given ϕ > ϕ3, the corresponding distance r satisfies
r|(α2,Q2)

Lemma 5
< r|

(α1,
Q2 sin(ϕ3−α2)
sin(ϕ3−α1)

)

Lemma 4

≤ r|(α1,Q1). (67)

Therefore, there is no intersection point in the rope shapes generated from initial tensions Q1

and Q2, i.e., at the side of ϕ > ϕ3.

• If α1 < α2 and Q̂1 > Q̂2, we study the side where ϕ < ϕ3, namely the generated rope segment

from initial tensions −Q1 and −Q2. As the angles of initial tensions are located out of the

interval (ϕ3−π, ϕ3), we have that the relations (50) and (52) do not hold any more. However,

due to the symmetry of force field (19), we can directly focus on the generated rope from

tensions −Q′1(α′1 = 2ϕ3 − α1 − π,Q1) and −Q′2(α′2 = 2ϕ3 − α2 − π,Q2), as implied in

Fig. 7(b). Clearly, α′1 > α′2. Thus, for given ϕ > ϕ3,

r|(α′2,Q2)

Lemma 5
> r|

(α′1,
Q2 sin(ϕ3−α′2)
sin(ϕ3−α′1)

)

Lemma 4
> r|(α′1,Q1). (68)

According to the symmetry, we can conclude that there is no intersection point in the rope

shapes generated from initial tensions −Q1 and −Q2, i.e., at the side of ϕ < ϕ3.
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• If α1 = α2, it must hold that Q1 6= Q2, otherwise Q1 and Q2 will generate totally same rope

shape. As Q1 6= Q2, the two created rope shape has no intersection as the side of ϕ > ϕ3

according to Lemma 4.

Hence, the statement “for any two different created unlimited rope shapes, there are at most two

intersection points” can be immediately proved by contradiction. In particular, if there are more

than two intersection points of two different created unlimited rope shapes, as discussed, the two

rope shapes must have the same tensions at one of the intersection point so that these two rope

shapes are exactly the same one.

Next, we discuss two initial tensions, i.e., (α1, Q
?
0(α1)) and (α2, Q

?
0(α2)) (α1 < α2), at point D1.

Clearly, both two generated ropes pass through points D1 and D2. According to the proved

statement, there is no other intersection point between D1 and D2, namely no intersection point

when ϕ ∈ (ϕ1, ϕ2). On the other hand, the initial value of dr(s)
dϕ(s)

is determined by α, i.e., dr(s)
dϕ(s) s=0 =

− r1
tan(ϕ1−α)

. As α1 < α2 results in − r1
tan(ϕ1−α1)

> − r1
tan(ϕ1−α2)

, we have

r(s)|(α1,Q?0(α1)) > r(s)|(α2,Q?0(α2)), when ϕ(s) ∈ (ϕ1, ϕ2). (69)

We denote by X1 the area constructed by the line segment D1D2 and the rope segment generated

by initial tension (α1, Q
?
0(α1)), while X2 is the area corresponding to initial tension (α2, Q

?
0(α2)),

as shown in Fig. 7(d). Therefore, the area X1 is a proper subset of X2, i.e., X1 ( X2. In particular,

the intersection of X1 and any straight line is convex, otherwise we can find a rope segment which

is not in the state of equilibrium, e.g., the rope segment D4D
′
4 in Fig. 7(c). The same conclusion

holds for X2. Thus, both X1 and X2 are convex sets.

According to the geometry property of convex sets [28], we have the perimeter of X2 is larger

than that of X1 when X1 ( X2. The perimeters of X1 and X2 are actually the rope length between

D1 and D2 plus the length of line segment D1D2. Therefore, we obtain that for any two initial

tensions, (α1, Q
?
0(α1)) and (α2, Q

?
0(α2)), if α1 < α2 holds, we always have the total rope length

corresponding to initial tension (α2, Q
?
0(α2)) is larger than that of (α1, Q

?
0(α1)), i.e., S2 > S1.

Therefore, according to Lemma 6, while keeping Q0 = Q?
0(α), we can find a unique angle α?

by tuning the value of α, so that the length of generated rope between D1 and D2 is exactly equal

to S? = m
ρmin

. Combining the optimal tension angle α? and the corresponding optimal tension value

Q?
0(α?), the optimal initial tension Q?

0 can be uniquely constructed, and subsequently we can build

the optimal rope solution for (P3) in case of m < ρmin(r1 + r2), equivalently the optimal UAV

trajectory for (OP) in case of T < r1+r2
V

.

Immediately, we conclude that the optimal rope shape {r?(s), ϕ?(s)} generated by the optimal
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(a) Generated ropes with fixed α and different Q0.
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(b) Generated ropes with fixed Q̂0 and different α.
Fig. 8. Observations of the monotonic impact of absolute value Q0 and angle α in initial tension.
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Fig. 9. Generated ropes with different α and optimized Q0 = Q?0(α).

initial tension Q?
0 satisfies the following two conditions:

(i). {r?(s), ϕ?(s)} passes through the point D2 = (r2, ϕ2);

(ii). The total rope length of {r?(s), ϕ?(s)} is m
ρmin

.

As a unique Q0 can be found while satisfying these two conditions, the found Q0 must be the

optimal initial tension, so that the obtained rope solution and equivalent trajectory solution are

absolutely optimal.
VI. SIMULATION RESULTS

In this section, via simulation results, we validate the monotonic impacts of the absolute value

Q0 and angle α on the generated rope, and evaluate our globally optimal design by comparing

the obtained optimal trajectory with the solution from existing trajectory design strategies. The

simulation setups are initialized as: H = 10m, βP
σ2 = 80dB, D0 = (0, 0)m, D1 = (200, 40)m and

D2 = (0, 100)m.

At first, with a fixed angle α = −0.047, the effect of absolute tension Q0 is depicted in Fig. 8(a).

We observe that a larger Q0 makes the generated rope closer to D0, while decreasing Q0 leads to

an upward movement of the generated rope. This indicates a unique Q0 can be found resulting in
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a generated rope passing through D2. From the figure, with our simulation setup, the optimal Q0

is clearly equal to 0.74 when α = −0.047. The correctness of the proved Lemma 4 is therefore

confirmed. Next, in Fig. 8(b), we show the effect of α on the generated rope with a fixed Q̂0 =

40.461. Clearly, with different initial tension angle α, the initial curve slope at D1, which is directly

influenced by α, becomes different. Besides, we can also observe that the generated rope becomes

closer to D0 when α increases. The Lemma 5 of monotonic effect of angle α is thus confirmed.

Then, with Q0 = Q?
0(α) which guarantees the generated rope passing through D2, we study the

behaviour of the generated rope with varying tension angle α in Fig. 9. Clearly illustrated, when

Q0 guarantees the rope passing through D2, the rope segment between D1 and D2 tends to be

expanded towards the direction to D0. Note that the rope lengths of segment between D1 and D2

with different initial angle α have been calculated and listed in the legend. By comparing the length

of rope segment, we can find that the rope length S is monotonically increasing with respect to

the initial tension angle α. As a result, the conclusion in Lemma 6 is also confirmed. Therefore,

via greedily searching, our design for insufficient rope mass m, i.e., insufficient time duration T ,

is capable of finding the optimal initial rope tension and resulting a global optimal UAV trajectory.

Furthermore, we validate the optimality of our design (i.e., global optimal) by comparing it with

two existing efficient trajectory design strategies:

• successive convex programming (SCP)-based design: As a popular strategy, the SCP-based

design quantizes the trajectory over time with a resolution δT . The value of δT is assumed

to be sufficiently small, so that the UAV can be considered to be static in a time slot with

length δT . Then by dividing the UAV trajectory into T
δT

time slots and optimizing the UAV

positions in all time slots via SCP techniques, a suboptimal UAV trajectory can be obtained.

However, note that the SCP-based design can only obtain a discretized solution, which is

required to be modified before realistic applications. Generally, the trajectory is modified by

letting the UAV fly between discrete points with a uniform speed along a straight line. The

speed is dependant on the distance between these discrete points and the time resolution. For

an accurate comparison, we evaluate the corresponding performance based on the modified

realistic trajectory.

• successive-hover-fly (SHF)-based design: In the SHF structure, the UAV will successively visit

all hovering points and fly along a straight line with maximum speed V in each two neighbour

hovering points. For comparison, we construct the SHF-based design in our problem (OP) with

a single hovering point. The UAV flies from D1 to a designed hovering point and back to D2
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along straight lines with a hovering behaviour at the hovering point. In simulations, we find

the defined hovering points and hovering duration via exhaustive search.

The default simulation setups for the comparison with existing strategies are as following: H =

10m, βP
σ2 = 30dB, D0 = (0, 0)m, D1 = (100, 50)m and D2 = (40, 80)m, which can provide us a

better view of the differences in trajectories designed by different strategies. We depict in Fig. 10

the average capacity obtained from all three strategies with varying time duration T and in Fig. 11

the corresponding computational CPU time for the complexity comparison. From Fig. 10, clearly,

a larger time duration T results in a higher average capacity for all strategies, which confirms the

benefits of allocating more time resource to the communication task. By comparing the network

performance in the enlarged figure, we find that our proposed solution always outperforms the

two benchmarks, which validates the optimality of our proposed solution. On the other hand, by

observing Fig. 11, we observe that our proposed solution also shows an extremely lower complexity

compared to the two benchmarks, especially when the time duration T is relatively larger. This is

due to the fact that we have built a closed-form expression for the optimal trajectory. Note that the

complexity of SHF-based solution results from the exhaustive search of the hovering points. With

relatively smaller T , the feasible region of hovering points tends to be smaller and leads to a lower

complexity.

Finally, in Fig. 12(a), we show the results of different designed UAV trajectory from different

strategies. We observe that the discrete points from SCP-based design are located much closer to

the global optimal solution, which results from our proposed design. However, the modification

(straight lines between discrete points) on SCP-based design for forming a continuous trajectory

still makes the solution deviate from the optimal one. As for SHF-based design, the difference
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Fig. 12. Comparison of different strategies with T = 15s.

compared to the optimal solution obviously comes from the assumption of straight lines between

hovering points, which is not optimal.

Then, we depict the average capacity of three designs, i.e., U({x(t),y(t)})
BT

, in Fig. 12(b) for the system

performance evaluation. Apparently, with higher time resolution (smaller δT ), the discretization

errors in SCP-based design are reduced, so that a better average channel capacity, also a larger

overall throughput, can be obtained. Although, the performance of SCP-based design is still upper

bounded by that of our proposed solution, which further confirms the global optimality of our design.

On the other hand, a higher resolution, a smaller δT , will also increase the number of variables

to be optimized, which will lead to a higher complexity. By comparison, our proposed design is

based on a closed-form expression which provides an absolutely lower complexity. Moreover, the

SHF-based design is also below the optimal one and becomes even better than the result from

SCP-based design with a lower time resolution.

Remark. Note that it should be mentioned that SCP-based design requires a convex approximation

of the quantized problem, which is much likely inaccessible in a scenario with complex models. By

contrast, the derivations in our proposed strategy for single-user network only requires a monotonic

increasing property (Property 1) on APF, i.e., position closer to user has a better performance,

which can be easily satisfied in most scenarios, like the scenario with probabilistic LoS model.

Therefore, our proposed strategy is again demonstrated to have a high capability in extensions. In

particular, for single-user networks, as long as the Property 1 holds for the corresponding APF,

the global optimality of extended solution can also be guaranteed. For multi-user networks, this

novel strategy can also enable the corresponding characterization and make the optimal solution

analyzable.



29

VII. CONCLUSION

In this paper, we proposed a novel strategy for optimally designing the UAV trajectory. We first

introduce the mechanical concept of APF into trajectory design and consider a single-user network

as an example network for strategy clarification. By representing the opposite of the objective in

design with artificial potential energy, the trajectory design problem is reformulated to a mechanical

problem, namely a shape design of a rope in equilibrium. In the considered network, the optimal

rope shape is investigated via mechanical principles. Different approaches are provided for obtaining

the optimal solution to the problems under different assumptions of rope mass. The optimal UAV

trajectory is equivalently constructed from the optimal rope shape. The optimality of obtained

solution is further confirmed by the simulation results. It is worthwhile to mention that a close-

form expression of the globally optimal curving trajectory is for the first time provided, which is

expected to open a door for researchers in this area handling similar/related problems.

As for potential extensions, by defining a different APF according to the objective, our proposed

novel strategy can be directly extended into various UAV systems with obstacle avoidance, different

channel and topology models, user numbers, design objectives, UAV tasks and so on, which confirms

the high adaptability. More specifically, when the user has a continuously changing location, we

can still model the user mobility into a conditionally varying APF and construct the equivalent

physical problem. For the scenario where the acceleration limit is necessary to be considered, we

can also model the limit as a constraint on the curvature and line density variation in the equivalent

physical problem. By combining multiple APFs from different users into one integrated APF, the

trajectory design problem in multi-user scenario also becomes possible to be analyzed in physics

domain.

Moreover, it should be pointed out that in comparison to traditional trajectory design, the com-

plexity of calculating the UAV trajectory based on the close-form expression is negligible. Hence,

applying learning process (even the time-consuming deep reinforcement learning) on the UAV

become highly possible, which could handle the UAV network serving dynamic GUs, where the

number and locations of the users changes in a quasi-static manner. We finalize the work by stressing

that via the introduced equivalence to mechanical problems, not only the mechanical principles,

but also the physics simulation softwares, e.g., Interactive physics and QuickField which allow to

self-define a force field, highly probably become efficient tools in the design of UAV trajectories.



30

(a)

subsegments

(b)
Fig. 13. Figures for Proof 1. (a) An example of optimal solution and a feasible solution with sufficient rope mass. (b) An example
of subsegments in I and I?.

APPENDIX A

PROOF OF LEMMA 1

In the rope defined by (21), (22) and (23), the total mass m is divided into three parts, i.e., mass

ρminr1 and ρminr2 on two straight lines I? and III?, and a mass point II? with mass m−ρmin(r1 +r2)

at D0, as marked in Fig. 13(a). For any feasible solution {x̂′0(s), ŷ′0(s)}, ρ0(s) and S0 to problem

(P3), starting with D1, we can accordingly cut it into three segments I, II and III, respectively with

mass ρminr1, m− ρmin(r1 + r2) and ρminr2. An example of cutting a feasible solution is shown in

Fig. 13(a). Hence, the optimality of the solution can be shown by proving that the potential energy

of each segment i ∈ {I, II, III} in the feasible solution is lower-bounded by that of corresponding

segment i?. According to the monotonic Property 1 of APF, the point D0 has the lowest potential

in the whole field, i.e., the potential energy of segment II? is definitely lower than or equal to the

one of segment II. Hence, the remaining tasks are the proof for segment I and segment II.

Let us then consider segment I and denote by sI the corresponding total length. In particular,

for a subsegment in I which starts from D1 and has a length of s, we denote by UI(s) and mI(s)

the potential energy and mass of this subsegment. An example of such subsegment is shown in

Fig. 13(b). Hence, we have

UI(s) =

∫ s

0

R′′(x̂′0(s′), ŷ′0(s′))ρ0(s′)ds′, mI(s) =

∫ s

0

ρ0(s′)ds′, s ∈ [0, sI]. (70)

Immediately, we have the potential energy of segment I given by UI(sI) and mI(sI) = ρminr1.

Correspondingly, we can also define by sI? , UI?(s) and mI?(s) the total length of for segment I?,

the potential energy and mass of a subsegment in segment I?. According to the definition of potential

energy and mass of the subsegment, we can formulate the following relations in differentiation

dUI(s)

dmI(s)
= R′′(x̂′0(s), ŷ′0(s)),

dUI?(s)

dmI?(s)
= R′′(x̂′?(s), ŷ′?(s)). (71)

Note that for a given value of mI(s) = m′ ∈ [0, ρminr1], the distance from the other end (x̂′0(s), ŷ′0(s))

of the subsegment in I to D0 is lower-bounded by ρminr1−m′
ρmin

= r1− m′

ρmin
, while this lower-bound is
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Fig. 14. For proof of density property. (a) An example for a sufficiently short segment. (b) Modification with lower potential energy.

exactly the distance from the other end of the subsegment in I? to D0 when mI?(s) = m′, as implied

in Fig. 13(b). According to Property 1 which shows that APF R′′(x, y) is monotonic increasing

with respect to distance r(x, y), we can conclude that when mI(s) = mI?(s) = m′ ∈ [0, ρminr1],
dUI(s)
dmI(s)

|mI(s)=m′ ≥ dUI? (s)
dmI? (s)

|mI? (s)=m′ holds. As mI(0) = mI?(0) = 0, mI(sI) = mI?(sI?) = ρminr1 and

UI(0) = UI?(0) = 0 hold, we have UI(sI) ≥ UI?(sI?), namely segment I? possesses lower potential

energy than segment I. Similarly, we have the potential energy of segment III? is lower than that

of segment III.

Thus, for any feasible solution to (P3), the corresponding potential energy is not lower than that of

the solution defined by (21), (22) and (23), i.e., the optimality of the constructed solution is proven.

APPENDIX B

PROOF OF LEMMA 2

We prove the lemma by contradiction. Assume that in the optimal rope solution {x̂′?(s), ŷ′?(s)},
ρ?(s) and S ′? of problem (P3), ∃s0 ∈ [0, S ′?] such that (x̂′?(s0), ŷ′?(s0)) 6= D0 = (w0,x, w0,y) and

ρ?(s0) > ρmin. Then, we select a sufficiently short segment ∆s0 around s0, such that the line density

in the segment ∆s0 can be considered as a constant ρ?(s0), as shown in Fig. 14(a). And we can

construct two rope segments with line density ρmin and length ∆s1 = 1
2
ρ?(s0)
ρmin

∆s0. The total mass of

the two introduced segments ∆s1 is the same as that of segment ∆s0. Thus, by replacing ∆s0 with

two segments ∆s1, as shown in Fig. 14(b), the total mass of the rope is not affected. Clearly, we

have 2∆s1 = ρ?(s0)
ρmin

∆s0 > ∆s0, which implies that the segment length 2∆s1 is enough to connect

the rope. Furthermore, as segments ∆s1 are obviously closer to the point D0 than segment ∆s0,

a reduction on the artificial potential energy is observed in the replacement behavior, according

to the monotonic Property 1 of APF. Therefore, a rope solution with better objective for (P3) is

constructed in Fig. 14(b), which is contradict to the assumption of the optimal rope solution.
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