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Reliability-Optimal Offloading in Low-latency Edge
Computing Networks: Analytical and Reinforcement

Learning Based Designs
Yao Zhu, Yulin Hu, Tianyu Yang, Tao Yang, Jannik Vogt and Anke Schmeink

Abstract—In this paper, we consider a multi-access edge
computing (MEC) network with multiple servers. Due to the low
latency constraints, the wireless data transmission/offloading is
carried by finite blocklength codes. We characterize the relia-
bility of the transmission phase in the finite blocklength regime
and investigate the extreme event of queue length violation in
the computation phase by applying extreme value theory. Under
the assumption of perfect channel state information (CSI), we
follow the obtained characterizations and provide an optimal
framework design including server selection and time allocation
aiming to minimize the overall error probability. Moreover, when
only the outdated CSI is available, a deep reinforcement learning
based design is proposed applying the deep deterministic policy
gradient method. Via simulations, we validate the convexity
proven in our analytical model and show the performance
advantage of proposed analytical solution and learning-based
solution comparing to the benchmark for perfect CSI and
outdated CSI, respectively.

Keywords—ultra-reliable and low-latency communication, edge
computing, finite blocklength, extreme value theory, deep rein-
forcement learning

I. INTRODUCTION

As a potential enabler for latency-sensitive applications,
the newly emerged multi-access edge computing (MEC) tech-
nologies have attracted a lot of attention from both academy
and industry, especially in the context of next generation
mobile networks [2]. It provides flexible and rapid deployment
for these applications via making the storage, control and
more importantly the computation to the edge of networks [3].
In comparison to cloud computing which suffers from long-
latency due to the logical and spatial distance between cen-
tralized servers and users [4], MEC networks distribute many
proximity servers to the users, e.g., WiFi access points (APs)
as well as cellular base stations (BSs), which shows signifi-
cant performance advantages with respect to communication
latency reduction. Nevertheless, the shortcoming of a MEC
server is that its storage capacity and computational ability are
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relatively limited, which are likely not sufficient to guarantee
the latency constraint for large computation tasks. Fortunately,
by applying the recent cooperative offloading technique, this
weak point can be compensated, i.e., the MEC network could
exploit the computational resources from multiple servers in
computing the task(s) for one user.

On the other hand, in the future beyond fifth genera-
tion (B5G) or sixth generation (6G), the explosive demands
on ultra-reliable communications [5], [6] are arising, such
as in the applications of vehicle-to-everything (V2X) and
the Internet-of-Thing (IoT) [7]. According to standard in
3GPP [8], the ultra-reliable and low-latency communica-
tion (URLLC) should provide communication with reliability
being larger than 99.999%. This ultra-reliable requirement
makes the wireless network designer taking the critical sce-
narios [9] into account, while the following types of errors are
expected to be modelled: from the communication perspec-
tive the transmission error in the finite blocklength regime
[10], [11] and in the computation phase the delay constraint
violation error [12].

In the URLLC scenarios, the reliability in the perspective
of either communication or computation is coupled with the
available delay tolerance. Note that the total task offloading
process contains the data transmission via wireless links and
computation at the MEC servers. For a given maximal allowed
service delay, there exists a trade-off in the time allocation for
the communication phase and computation phase. Moreover,
on the one hand the user likely has different distance to
different servers, and on the other hand the channels behave
randomly. Hence, the qualities of the channels from the user
to servers are also different. In addition, the MEC servers
also have different (instantaneous) computing capabilities and
buffer statuses. Hence, offloading one user’s tasks to more
and more servers is not necessarily always a good choice to
optimize the reliability, since the partial offloading to a server
with a poor channel likely results in an error. Oppositely,
if we always only offload (large) tasks to just one or two
servers, this may introduce a significant computing time cost,
which further increases the delay violation probability. Thus,
it is essential and beneficial optimally selecting servers which
could enhance the service reliability of the MEC network.

The task offloading in URLLC-supported MEC networks
has been investigated in [12], [15], [16]. For instance, the
authors in [12] study the extreme probabilistic cases that
queue length in the servers violates the delay threshold. It is
proposed in [15] an offloading scheme by jointly considering
the latency and reliability as a cost function. The work
in [16] considers a cross-layer design and investigates the
performance of processor-sharing MEC servers. However, all
the above results are conducted under the assumption of
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transmissions being arbitrarily reliable at Shannon’s Capacity,
which is only true in the so-called infinite blocklength regime.
For low-latency MEC network where the transmission block-
lengths are short, it is more essential to consider the finite
blocklength (FBL) [17] impacht in the network design. To the
best of our knowledge, it is still missing in the literature the
optimal offloading design for a multiple servers MEC network
operating with FBL codes, especially the joint framework
optimization with multi-server selection.

Additionally, the aforementioned optimal offloading prob-
lem in the studied multi-server MEC network is in practice
particularly intractable due to the uncertainty of the stochastic
wireless channels and the continuous influences on the future
statuses of the offloading process, i.e., the status of a server
is time-dependent. Targeting of solving such dynamic deci-
sion making problem, reinforcement learning (RL) has been
efficiently applied to automatically learn an optimal policy
of environment based decision making [18]. By modeling
the dynamic decision making problem as a Markov decision
process (MDP) [19], RL algorithm trains an agent to find
the optimal action policy by repeatedly interacting with the
environment. During the continuous interaction the agent
explores the system and updates its action policy based on
the instantaneous feedback of the environment and finally
converges to an optimal policy which provides a solution of
time-variant decision making problem.

Conventional RL algorithms suffer from the problem of
slow convergence, which is unsuitable and inapplicable to
large-scale systems [18]. To overcome this shortage, the
recently emerged and fast developed deep reinforcement
learning (DRL) technique combines RL with the deep neural
network (DNN) as the function approximator so that the
capability of generalization and the robustness for large-
scale problems are significantly enhanced. Benefiting from
the various improved DRL algorithms, e.g., deep Q-learning
[20], deep deterministic policy gradient (DDPG) [21], DRL
has been also adopted in many MEC systems to solve the
dynamic offloading problems with respect to multiple metrics,
e.g., execution latency and energy consumption [22], [23],
computation rate [24] and long-term utility [25]. Nevertheless,
the aforementioned works all focus on the non-URLLC sce-
nario. The authors in [26] develops a multi-level architecture
with data-driven deep learning approach for URLLC, while
the reliability optimization with model-based learning under
FBL regime is missing. Our previous work [27] was the first to
investigate the feasibility of model-based DRL solution for the
reliability optimised offloading problem in the MEC network
with a single server. To the best of our knowledge, model-
based DRL solution to reliability optimization for a multi-
server MEC system has not been addressed, especially when
the servers are time-dependent.

Motivated by the above observations, we consider multi-
server MEC network and propose an optimal framework
design aiming at minimizing the overall error probability
via optimally selecting the servers, assigning workload and
allocating time to the two phases. Our major contributions
are:
• We leverage the FBL comunication performance model

from Polyanskiy [17] to characterize the transmission
reliability and the extreme value theory (EVT) [28] to
model the errors possibly incurred at a server.

• Assuming the system with time-independent MEC
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Fig. 1: An example of the considered system in which multiple UEs
may connect to different servers, while the representative UE is mark
as solid.

server and perfect channel state information (CSI),
we formulate an optimization problem to minimize
the overall error probability by optimally selecting the
cooperative servers, frame structure and workload as-
signment. We prove the convexity of the sub-problems
after decomposing the original one, and reformulate the
original problem to a mixed integer convex problem, via
which the global optimal solution is obtained.

• In addition to the conference version [1] we introduce
the integer task partition model. Based on that, we
exploit the Karush-Kuhn-Tucker (KKT) condition and
propose an efficient algorithm to assign the workload
and make the server selection at the same time, which
reduces the computational complexity significantly.

• Moreover, in order to cope with a more practical
scenario where server states are time-dependent and
only the outdated CSI is available, we propose a DRL,
specifically DDPG, based algorithm to learn the opti-
mal dynamic offloading policy by designing a proper
reward mechanism. In particular, we exploit the FBL
regime and apply extreme value theory to model the
error probability of communication and computation to
address the sparse reward problem in the training. The
numerical results show the outperformed performance
of the proposed DRL based solution.

The rest of the paper is organized as follows. In Section II,
the studied offloading problem in MEC system is described.
In Section III, the end-to-end reliability of the considered
network is characterized. The proposed analytical design is
introduced with respect to framework and server selection in
Section IV. After that, the DRL based algorithm for system
with time-dependent servers is designed in Section V. The
simulation results are provided in Section VI. Finally, Section
VII concludes the whole work.

II. SYSTEM MODEL

In this work, we consider a MEC network with K available
servers K = {1, ..,K} and one user equipment (UE), as
shown in Fig. 1. The UE is assumed to have a compute-
intensive application needed to be processed by the MEC
network, e.g., a radar sensor has an anomaly detection that
requires analysis. Therefore, the low-latency service of the
application has to be offloaded to and computed by distributed
MEC servers in the networks. The system is assumed to
operate in a time-slotted fashion, where time is divided
into frames. The application service (contains a group of
computing tasks from various UEs with different task types)
is required to be finished within a frame to satisfy the low-
latency requirement. Moreover, as shown in Fig. 2, each frame
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Fig. 2: The structure of a frame.

is divided into three phases: a communication phase with
length of t1, a computation phase with length of t2 and a
feedback phase with length of t̄.

In the communication phase, the UE broadcasts the input
data tasks of τ bits to different selected servers. Then,
in the computation phase each selected server k processes
the corresponding tasks with workloads ck as long as it
correctly decoding the data. Denote the total time length of the
communication and computation phases by T , i.e., we have
T = t1+t2. Finally, the servers report the computation results
to the destination in the feedback phase. Clearly, the total ser-
vice time of the application satisfies T+ t̄. However, since the
transmit power of the severs is relatively high than the transmit
power of the UE P and the data size of the computation results
is generally much smaller than the input data size, the length
of feedback phase t̄ is usually considered to be negligible in
comparison to T [13]. In this work, we assume t̄ to be constant
and significantly small. In other words, in the framework
optimization problem considered in the next section, we only
focus on determining the optimal t1 and t2 while satisfying
the constraint with a maximal allowed T . Let Ts denote the
time duration of a single symbol. Therefore, we have the
blocklength in the communication phase n = t1

Ts
. Note that

there are τ bits information transmitted in the communication
phase. The corresponding coding rate can actually be written
as rcod = τ

n (in bits/symbol). Wireless channels are assumed
to experience quasi-static Rayleigh fading, and therefore the
channel fading remains the same within each frame and varies
from one frame to the next. Denote by the channel state of the
link from the UE to server k by hk, we have hk ∼ CN (0, 1).
Moreover, as a low-latency scenario with short blocklength is
considered, the frame length is more likely shorter than the
channel coherent time, i.e., the channels (via the same link)
of adjacent frames are correlated. We adopt the widely-used
Gauss-Markov model [30], [31] characterizing this channel
correlation:

hk = ρh′k +
√

1− ρ2∆hk, (1)

where 0 ≤ ρ2 ≤ 1 is so-called the channel correlation
coefficient, and h′k is the channel state of the previous frame,
∆h ∼ CN (0, 1) is a complex Gaussian random variable.

Channels are considered to be independent. We denote the
noise power at server k by σ2

k, UE transmit power by P ,
and the path-loss of the UE-server k link by φk. Then, the
signal-to-noise ratio (SNR) of the received signal at server k,
denoted by γk , is given by

γk =
|hk|2P
φkσ2

k

. (2)

For the computation process, we denote the total workloads
for the application by cO and the computation power at server
k by fk. We assume that each server starts to process tasks
as long as the input data of the tasks is successfully received.

Note that only the selected servers are active to the process
tasks from the UE. We denote the decision vector of the server
selection results by

A = {a1, ..., aK}, (3)

where ak indicates the selection result of server k. For
instance, when ak = 1, this implies that the UE will
offload server k. Case ak = 0, the server k is not selected.
Then, the set of the selected servers can be represented by
K̂ = {k̂

∣∣∀ak̂ = 1}. Hence, the number of selected servers,
i.e., the size of set K̂, is

∑
k ak.

Then, the required task from UE is partitioned into sub-
tasks, which are computed by the selected servers in set K̂.
We denote by C = {c1, ..., cK} the assigned workload vector,
where ck is the assigned workload to the server k. Since the
task is only finished when all assigned workload is executed,
the assignment of workload must fulfill following conditions:
i) all workload should be assigned to the servers; ii) the
assigned workload should not exceed the total amount of
workload; iii) none of workload should be assigned to the
non-selected server. Those conditions can be summarized as
cO =

∑
k ck and ck ≤ akcO, where k ∈ K.

As we consider a low-latency service, the total service time
must be lower than a stringent threshold. Moreover, the relia-
bility is also one of the major concerns in the our design. To
this end, we investigate the communication behaviour via the
wireless channel following the FBL theory and characterize
the computation delay by exploiting the extreme value theory.

III. CHARACTERIZATION OF THE END-TO-END ERROR
PROBABILITY

In this section, we first model the FBL communication
errors and extreme event-related computation errors, and
subsequently characterize the end-to-end error probability.

A. Communication Error in the FBL Regime
Following the FBL transmission model [17], the (block)

error probability of the transmission to server k is given by

ε1,k = P(γk, rcod, n)

≈ qfunc
(√

n

Vk(γk)
(Ck(γk)− rcod)loge2

)
,

(4)

where n and rcod are blocklength and coding rate introduced
in the the previous section, i.e., n = t1

Ts
(in symbols) and

rcod = τ
n (in bits/symbol). qfunc(x) is the Q-function in

statistics1, i.e., qfunc(x) = 1√
2π

∫∞
x
e−t

2/2dt, and Ck =

log2(1 + γk) is the Shannon capacity. Moreover, Vk(γk) is
the channel dispersion [17] between the UE and the server k.
Under a complex AWGN channel, Vk = 1− 1

(1+γk)2 .

B. Extreme Event-related Computation Error
In this subsection, we characterize the computation model

at each server. We denote the computing time/delay of server
k by Dk. Note that the server k may receive computation
request from multiple UEs. In this work, we assume each
server following the First-Come First-Serve (FCFS) policy,

1It represents the tail distribution function of the standard normal distri-
bution, which is different from the Q-function in Q-learning.
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i.e., the assigned task is only computed if previous tasks
assigned to server k are all finished. In general, the execution
time at server k contains the computing time and the queuing
delay (i.e., waiting time delay in the queue buffer), which can
be expressed as

Dk =
ck
fk

+Drest
k +Wk, (5)

where Wk is the queue delay for serving tasks which
randomly arrive in the current frame before the current task
and Drest

k is the remaining queue delay from the previous
frame. Specially, Drest

k is influenced by not only the assigned
workload cpre

k at the previous frame, but also the intermission
time T pre

k from execution of the previous offloaded task to the
arrival of the current offloaded task. Hence, it can be written
as Drest

k = max{ c
pre
k

fk
− T pre

k , 0}.
A computation delay violation error occurs at server k, if

the server fails in finishing the assigned tasks within t2. The
probability of this computation error at server k is expressed
by

ε2,k = Pr(Dk ≥ t2), (6)

where Pr(Dk ≥ t2) is the probability that the computing
time exceeds t2. Note that Dk consists of two components
Wk and Drest

k , where Wk is a random variable that depends
on the distribution of incoming offloaded tasks from other
UEs in the MEC network. As the server follows the FCFS
principle, the queue delay Wk is generally proportional to
current queue length according to the little’s law [32]. In
fact, we consider a finite queue buffer size on the server side,
where the corresponding maximal queue delay is way larger
than Tmax. Incoming tasks are directly dropped, if they exceed
the queue buffer (regardless from which UE). Therefore, ε2,k

also includes the possibility that the offloaded task from UE
of interest being dropped by server k. Meanwhile, Drest

k is
a deterministic parameter that is influenced by the previous
actions. Obviously, ε2,k is monotonously decreasing function
w.r.t. ck/fk and t2, i.e., a loose threshold or a small portion
of workload leads to a low computation delay violation
probability. In addition, for a server k, the corresponding
frequency fk is fixed2.

The distribution of the execution time is coupled to the
distribution of the waiting time Wk. In particular, we have

ε2,k = Pr(Dk ≥ t2) = Pr(Wk ≥ t2 −
ck
fk
−Drest

k ). (7)

For the sake of simplicity, we denote the modified delay
tolerance in the computation phase by t̂2 = max{t2 − ck

fk
−

Drest
k , 0}. It should be pointed out that Wk is influenced by

the traffic condition of the system, e.g., the task arrivals of
served UEs, and can be modelled by a certain task arriving
process. Without loss of generality, we consider Wk follows
a general random distribution with an unbounded upper tail.

Due to the stringent reliability requirement, the system
demands an extreme low computation error (delay violation)
probability, i.e., the complementary cumulative distribution
function (CCDF) of the queuing time satisfies F̄Wk

(t̂2) =
ε2,k = Pr(Wk ≥ t̂2) � 1. In other words, the intervall
of monotonically increasing CCDF with a sufficiently high

2Although the server may adopt the dynamic frequency and voltage scaling
(DVFS) technique frame-wise, we assume the CPU frequency during the
single frame is fixed.

t̂2, i.e., the tail performance of the CCDF, is with the high
interests in the design of such reliable MEC network. Follow-
ing the extreme value theory (EVT) model in [12], [28],we
charaterize the tail of the probability distribution of ε2,k as
follows. Let Xk = max{t̂2 − d, 0} denotes the exceedance
of delay tolerance and we consider the distribution of Dk

conditionally exceeding a high threshold d. According to [28],
if the threshold d closely approaches F−1

Wk
(1), the conditional

CDF of the exceedance Xk can be expressed as

FXk|Dk>d(xk) = Pr(Wk − d ≤ xk|Wk > d)

≈ G(xk;σ, ξ)

=

 e−xk/σ, if ξ = 0,

1−
(

1 + ξxk
σ

)− 1
ξ

, otherwise

(8)

where G(x;σ, ξ) is the generalized Pareto distribution (GPD)
characterized by the scale parameter σ > 0 and shape
parameter ξ. In particular, the value of ξ influences the
tail behaviors. In this work, we only consider the cases
of ξ > −1/2, which implies that the CCDF has finite
upper endpoint [12]. In fact, the frame duration is generally
insufficient to completely prevent the occurrence of extreme
events in an URLLC scenario. Therefore, there is always a
possibility that queue delay in the server is too long to be
handled within t2 regardless of actual queue buffer size.

Hence, the error probability with given time slot of compu-
tation phase t2 in the ultra-reliable scenario with the threshold
d is given by

ε2,k = (1− FWk
(d))(

1−G(max{t2 −
ck
fk
−Drest

k − d, 0};σ, ξ)
)
,

(9)

where σ and ξ are parameters that are depends on the
character of the computing task arrival model, as well as
the computation power of the server k. Therefore, we can
obtain them with sufficient historical data. More importantly,
the validity of the expression does not depend on such specific
task distribution model [12]. Equation (9) actually indicates
the influence of traffic condition, e.g., task arriving rate,
number of UEs in the coverage area, etc., on both G(·) and
d. In particular, ε2,k is monotonically increasing in d. Hence,
for any task arriving processes with a dense traffic, the value
of d becomes large, i.e., approaching F−1

Wk
(1), which leads to

a higher computation error probability.

C. End-to-End Error Probability
Note that the system may select multiple servers, while

the total workload is assigned among them to be computed
simultaneously. The whole service in the current frame is
considered as successful only if all parts of the corresponding
selected servers are successful, i.e., no error occurs during
communication and computation at each server link. Let εk
denotes the error probability of the link k, i.e.,the probability
that the decoding at server k side fails or the computation
delay exceeds t2. Furthermore, if server k is not selected,
such link has no impact to the error probability, i.e., εk =
0,∀k 6∈ K̂. Hence, for all k ∈ K, εk can be written as

εk = ak(ε1,k + (1− ε1,k)ε2,k) = ak(ε1,k + ε2,k − ε1,kε2,k).
(10)
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Let εO denotes the end-to-end error probability over all the
selected servers. Then, εO is given by

εO = 1−
∏
k

(1− εk). (11)

IV. OPTIMAL FRAMEWORK DESIGN AND WORKLOAD
ASSIGNMENT FOR TIME-INDEPENDENT SYSTEM WITH

PREFECT CSI

We start with the simplified time-independent system under
the assumption that we have perfect knowledge of channels
and the server statuses are not influenced by previous actions,
i.e., hk is known while ρ = 0 and Drest

k = 0. Hence,
the system can be optimized frame-wise. Furthermore, we
consider the offloading task follows data-partition model,
where it can be divided into arbitrarily small sub-tasks and
executed at different MEC servers [29]. In particular, we
propose a framework optimization design to minimize the
end-to-end error probability by optimally allocating the sum
(of communication and computation) time T to the two phases
t1 and t2 as well as the assigned workload ck, while optimally
determining the offloading decisions A with consideration of
both the task-partition and the server selection in each frame.

A. Problem Statement

We aim to minimize εO by optimally allocating the maxi-
mal allowed T , denoted by Tmax, to t1 and t2, and optimally
selecting multiple severs. In addition, we also determine the
optimal workload assignment ck to each selected server k.
Hence, the optimization problem is formulated by

minimize
t1,t2,C,A

εO (12a)

subject to t1 + t2 ≤ Tmax, (12b)
A ∈ {0, 1}K , (12c)
εk ≤ εmax, ∀k ∈ K, (12d)
ak ≤ ck ≤ akcO,∀k ∈ K, (12e)∑K

k=1
ck = cO, (12f)∑K

k=1
ak ≥ 1, (12g)

where constraint (12b) limits the operation within the maximal
duration of one frame Tmax. The constraint (12d) restricts
the error probability of the selected links lower then given
threshold, to prevent waste of network resource. In addition,
the constraints (12e) - (12g) are the conditions of the workload
assignment.

B. Optimal Solution to (12)

In this subsection, we handle Problem (12), where our
methodology is briefly described as follows: Firstly, the
original problem (12) will be decomposed into subproblems.
Subsequently, the subproblems will be characterized, and the
relationship between the optimal solutions of t1 and t2 will
be investigated. Finally, following the characterization and
investigation, we reformulate the subproblems, based which
reformulate the original problem in (12) to be solvable.

1) Decomposition and subproblems of (12): Note that in
total K servers are available, thus there exists 2K−1 possible
combinations of selected servers K̂. Hence, we could decom-
pose the original problem in (12) into 2K − 1 subproblems
corresponding to different K̂. For each set/combination K̂, the
subproblem is given by

minimize
t1,t2,C

εO (13a)

subject to ak = 1, ∀k ∈ K̂, (13b)

ak = 0, ∀k ∈ K \ K̂, (13c)
(12d), (12e) and (12f) (13d)

2) Characterization of Subproblem (13): First, we fix the
task assignment by letting ck = c◦k and investigate the
subproblem

minimize
t1,t2

εO (14a)

subject to ck = c◦k, ∀k ∈ K, (14b)
(13b), (13c) and (13d)

In order to characterize Subproblem (14), we provide three
lemmas as follows.

Lemma 1. εO is convex in both t1 and t2.

Proof: First, we discuss the convexity of εk. For a non-
selected server k 6∈ K̂, εk = 1 holds, which is clearly convex
(constant) in either t1 or t2. Then, for a selected server k ∈ K̂,
the second derivative to t1 is

∂2εk
∂t21

=
∂2ε1,k

∂t21
+ 0− ∂2ε1,k

∂t21
ε2,k

=
∂2ε1,k

∂n2
1

(
∂n1

∂t1

)2

(1− ε2,k)

=
∂2ε1,k

∂n2
1

(1− ε2,k)

T 2
S

.

(15)

It is proven in [33] that ∂
2ε1,k
∂n2

1
≥ 0 holds. In addition, we have

the computation error probability lesser than 1, i.e., ε2,k ≤ 1.
Therefore, we have ∂2εk

∂t21
≥ 0. In other words, εk is convex

in t1.

Similarly, the second derivative of εk to t2 is

∂2εk
∂t22

=
∂2ε2,k

∂t22
+ 0− ∂2ε2,k

∂t22
ε1,k =

∂2ε2,k

∂t22
(1− ε1,k).

(16)

Considering an ultra-reliable scenario, where the system
only selects the server when the error probability of the link
εk fulfills a given threshold, e.g., εmax < 0.01, the error
probability in both communication and computation phases
must also fulfills such threshold as shown in (11). Hence, it
is reasonable to assume that we have a sufficient t2 so that
the EVT can be applied for the selected server, i.e., t2 > d.
According to (8), the second order derivative of ε2,k w.r.t. t2
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is given by

∂2ε2,k

∂t22
= FDk(d)

∂2G(t2 − ck
fk
dk;σ, ξ)

∂t22

= FDk(d)
(1 + ξ)

σ2
·
(

1−G(t2−
ck
fk
−d;σ, ξ)

)− 2+ξ
ξ ≥0.

(17)

As 1− ε1,k ≥ 0 holds, we have ∂2ε2,k
∂t22

≥ 0.

Subsequently, we further investigate the convexity of εO.
Let vk = 1− εk denote the reliability of server k for the con-
venience of notations. Clearly, it holds vk = 1, if ak = 0. It
implies that, for a non-selected server, the offloading between
such server and the UE is always considered as reliable with
”empty” input data. Then, the second order derivative of εO

to t1 can be written as

∂2εO

∂t21
= −

∑
k

∂2vk
∂t21

∏
l 6=k

vl +
∑
k

∑
l 6=k

∂vk
∂t1

∂vl
∂t1

∏
p 6=k,p 6=l

vp.

(18)
According to (15), εk ≤ 1 is a monotonic and convex function
w.r.t. t1. vk = 1−εk ≥ 0 is therefore monotonic and concave.
It holds that ∂2vk

∂t21
≥ 0,∀ak = 1 and ∂2vk

∂t21
= 0,∀ak = 0. Fur-

thermore, it also hods that sgn
(
∂vk
∂t1

)
= sgn

(
∂vl
∂t1

)
,∀ak =

al = 1 and ∂vk
∂t1

= 0,∀ak = 0 , where sgn(·) is the sign
function. Hence, we have ∂2εO

∂t21
≥ 0 . Analog to t1, we

have that ∂2εO
∂t22

≥ 0 since εk is convex and monotonic in
t2 according to (16).

As a result, εk is convex in both t1 and t2.

Since both communication and computation phases are
restricted within the frame duration T , there exists clearly
a trade-off between the two phases. Therefore, we have the
following lemma to characterize the relationship between the
optimal solutions of t1 and t2.

Lemma 2. Denote by t∗1 and t∗2 the optimal solutions to
Problem (13). Then, t∗1 + t∗2 = Tmax holds.

Proof: The lemma can be proved with contradiction in
the following way. First, we assume the optimal solution t′1
and t′2 satisfying the strict constraint given in (12b), i.e.,
Tmax − (t′1 + t′2) = α > 0. As the solution is optimal,
ε′O(t′1, t

′
2) is definitely the global minimum. Then, we have

ε′O(t′1, t
′
2) ≥ εO(t1, t2).

On the other hand, there exists a feasible solution (t′′1 =
t′1 + α, t′′2 = t′2) ∈ {t1, t2|t1 + t2 ≤ Tmax}. Recall that it has
been shown in the proof of lemma 1 that εO is decreasing
in blocklength n = t1

Ts
and in t1. Hence, it can be concluded

that the (t′′1 , t
′′
2) lead to a lower error probability in compar-

ison to (t′1, t
′
2), i.e., ε′′O(t′′1 , t

′′
2) < ε′O(t′1, t

′
2). Therefore, the

assumption of the optimal solution (t′1, t
′
2) is violated.

Thus, we can replace the inequality constraint (12b) with
equality constraint, i.e., t1 + t2 = Tmax. Consequently, the
optimization variables of t1 and t2 are reduced to a single
variable, e.g., t1. Then, we characterize the problem by jointly
optimizing t1 and ck, resulting in the following problem

minimize
t1,C

εO (19a)

subject to t1 + t2 = Tmax, (19b)
(12d), (12g) and (12e). (19c)

To handle this problem, we have following lemma.

Lemma 3. The end-to-end error probability εO is jointly
convex in t1 and C, if it holds εk ≤ εmax � 1, ∀k ∈ K.

Proof: If the error probability of each link k is suffi-
ciently small, i.e., εk � 1, the end-to-end error probability
can be approximated as

εO = 1−
∏

(1− εk) ≈
∑

k
εk. (20)

Furthermore, it implies that both error probability in computa-
tion and communication phase of the link k must also smaller
than εmax according to (10), i.e., the error probability in link
k can also be approximated as εk ≈ ε1,k + ε2,k.

To determine the joint convexity of εO, we first investigate
the convexity of arbitrary εk, the Hessian matrix of which
with respect to t1 and C can be written as

H =

 ∂2ε1,k
∂t21

+
∂2ε2,k
∂t21

∂2ε2,k
∂t1∂ck

∂2ε2,k
∂t1∂ck

∂2ε2,k
∂c2k

 . (21)

After some manipulations according to Lemma 1 and (9),
the determinate of H is given by

det H =
∂2ε1,k

∂t21

∂2ε2,k

∂c2k
(22)

where ∂2ε1,k
∂n2

1

1
T 2
s
≥ 0 and ∂2ε2,k

∂c2k
=

∂2ε2,k
∂t22

1
f2
k
≥ 0. Hence, it

holds det H ≥ 0. As a result, εk is jointly convex over t1 and
C.

Since the error probability of each link k is jointly convex
and the end-to-end error probability is the sum of error
probabilities in every link, the end-to-end error probability
is also jointly convex over t1 and C.

3) Reformulation of Problem (12): According to the above
lemmas characterizing the subproblem (13), the original prob-
lem given in (12) could be reformulated to

minimize
t1,C,A

εO = 1−
∏
k

(1− εk) (23a)

subject to t1 + t2 = Tmax, (23b)
εk ≤ ak, ∀k ∈ K,

(23c)
ak(ε1,k + ε2,k − ε1,kε2,k) ≤ εk,∀k ∈ K,

(23d)
(12c) to (12g). (23e)

where constraints (23c) and (23d) help us to eliminate the
the multiplication of variable ak and t1 by linearizing the
objective function. We can easily show that both the ob-
jective function and the constraints in Problem (23) are
either convex or affine. Therefore, the optimization problem
is a mixed integer convex problem (MICP), which can be
efficiently solved by the recently developed algorithm in [34].
In particular, which results in a computational complexity
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level of O(2K − 1), since it is essential to solve 2K − 1
standard convex problems and select the minimal value. By
letting A = {A1, ...,A2K} denote the set of all possible
combinations of A, where Ai ∈ {0, 1}K , the pseudocode
of the algorithm to solve problem (12) is summarized in
Algorithm 1.

Algorithm 1 for solving Problem (23) as MICP

1: for i = 1, ..., 2K do
2: Initilziation: ε∗ ← 1
3: Choose the i-th possible combination: A← Ai

4: Solve Problem (19) according to Lemma 3: ε∗O,(i) = min
t1,C

εO

and
(
t∗1,(i),C

∗
(i)

)
= arg min

t1,C
εO

5: Update the global optimum: ε∗ ← min{ε∗, ε∗O,(i)}
6: end for
7: Obtain optimal solutions: (t∗1,C

∗) = arg min
t1,C

ε∗O

8: Obtain solution of t2: t∗2 ← T − t∗1

C. Low-complexity Server Selection and Task Partition
Schemes

According to the results in previous subsections, we are
able to obtain the optimal solution of the subproblem with
given server selection in K̂, the optimal server selection
can be determined. However, the complexity of the process
is significant, i.e., we have to calculate and compare all
optimal results of 2K − 1 serve selection combinations. In
particular, the computational complexity level of the process
is O(2K−1). In addition, in the model of previous subsections,
tasks are treated/assumed to be arbitrarily dividable, which is
too optimistic in a practical system.

To reduce the complexity and consider a more realistic
partition model (the task is no longer arbitrarily dividable), in
the following we exploit the KKT conditions [38] to provide
an efficient method for both server selection and workload
assignment. In particular, under this partition model, we
propose an efficient algorithm to obtain the optimal workload
assignment instead of exhaustive search.

1) Server Selection based on KKT conditions: Similar to
the design in Section IV-B, the objective is to minimize
the end-to-end error probability, i.e., the objective function
remains the same as (19). In particular, we achieve this ob-
jective by optimizing the workload assignment and the server
selection with a fixed frame structure and CPU-frequency, i.e.,
t1 = t◦1 ≤ T and fk = f . It is worthwhile to mention that
the optimization problem is considered for all possible frame
structures instead of targeting at any specific setup. Hence,
we have

minimize
C,A

εO (24a)

subject to t1 = t◦, (24b)
(23b) to (23d). (24c)

Next, we establish the following lemma by exploiting the
KKT conditions to solve the above problems.

Lemma 4. Given the duration of the first slot t1 and the du-
ration of the second slot t2, the optimal solution of workloads
c∗k for the offloaded task with the selected servers in set of K̂

satisfy
ε2,k(c∗k) = max{ν − ε1,k, 0} (25)

where 0 ≤ ν ≤ 1, such that it holds∑
ck = cO. (26)

Proof: First, we have ck = 0,∀k 6∈ K and the corre-
sponding εk = 0 can be eliminated from εO. We denote ν ≥ 0
and λk̂ ≥ 0,∀k ∈ K̂, the corresponding dual variables for the
constraint (12f) and constraint (12d), respectively. The partial
Lagrangian of problem (24) can therefore be given by

L = 1−
∏

(1−εk)+ν(
∑
k

ck−co)+
∑

λk(εk−εmax). (27)

Based on the KKT conditions, the optimal solution of ν∗,
λ∗k and c∗k must satisfy the following necessary and sufficient
conditions:

λ∗k ≥ 0,∀k ∈ K̂, (28a)

λ∗k(ε∗k − εmax) = 0,∀k ∈ K̂, (28b)
∂L

∂ck
=
∂εk
∂ck

∏
l 6=k

(1− εl) + ν∗ + λk
∂εk
∂ck

= 0, k ∈ K̂. (28c)

By eliminating λ∗k, we reformulate conditions in (28b) as

∂εk
∂ck

1

1− εk
=

ν∗∏
(1− εk)

,∀k ∈ K̂. (29)

The equality of ν∗ holds ∀k ∈ K̂. Therefore, we have

∂ε1

∂c1

1

1− ε1
= ... =

∂εk
∂ck

1

1− εk
. (30)

Since εk is a monotonically increasing function with respect
to ck according to (10) and (6), above equality chain holds
and only holds if

ε1(c∗1) = ... = εk(c∗k) = ν. (31)

where ν is the positive value, so that it holds both ε2,k(c∗k) =
max{ν − ε1,k, 0}, and

∑
ck = cO.

Remark. Lemma 4 provides the optimal workload assign-
ment. This can be intuitively interpreted in the following way
distinguishing if the system is homogeneous or not: For a
homogeneous system, i.e., hk = hl and fk = fl for all
k, l ∈ K, the optimal solutions are achieved with homoge-
neous distributed workload c∗k = c∗l = cO∑K

k=1 ak
regardless

of frame structure. In this case, all servers in K should be
selected. On the other hand, for a heterogeneous system, the
optimal solution of this problem can be considered as a non-
linear (inverse) waterfilling application, where ε1,k and ν can
be seen as the ground level above patch k and the depth of the
waterflood for the region (all servers), respectively. The total
amount of water filled into each servers is then ε2,k(c∗k). We
increase the flood level by feeding the server k with increment
∆ck until we have used all amount of water cO. Then, the
workload ck causing the increment depth of water above patch
k is then the optimal value. In addition, any server that above
the waterflood ν should be deselected.

According to Lemma 4, instead of going through all pos-
sible server selection combinations as the design in Section
IV-B, here we reduce the total number of server selection
combinations in the following steps: We firstly sort the servers
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in descending order of ε1,k. Subsequently, we build K server
selection combinations Kk = {1, ..., k} from K. For each
subset, we let al = 1, where l ∈ Kk. For example, for
K1 = {1}, we set a1 = 1. Meanwhile, for K2 = {1, 2}, we
set a1 = 1 and a2 = 1. Then, we solve subproblems expressed
in (19) for all K subsets and obtain the optimal solution
denoted by C

(k)
KKT and t(k)

1,KKT and the optimal value denoted
by ε(k)

O,KKT. On the last step, we choose the minimal ε(k)
O,KKT

as the final/overall optimal value, i.e., ε∗ = min{ε(k)
O,KKT} and

the corresponding C
(k)
KKT, t(k)

1,KKT are the optimal workload
assignment and optimal frame structure, respectively. In this
way, we reduce the complexity from O(2K − 1) to O(K).

2) Integer Task Partition Model: Instead of simple data-
partition model, which assumes that the task can be bit-wise
independently and arbitrarily partitioned into different sub-
tasks, we consider a more realistic partition model without
losing the generality, where the partition is pre-defined by
the character of the task with finite slices. In particular, we
denote by ∆c the smallest amount of workload of each sub-
task. Hence, let Ω = cO

∆c present the total slices of the tasks
and ωk the number of slices that belong the assigned sub-task
for server k, we have ck = ωk∆c. The elements of set C can
be mapped with element of set Ω, where Ω = {ω1, ..., ωk} is
the set of the number of assigned workload slices. Specially, if
∆c = 1 bit, our model coincides to the data-partition model. If
∆c = cO, the partition model degrades into binary offloading
model.

To adapt the new partition model, we replace the constraints
and reformulate the problem as

minimize
C,A

εO (32a)

subject to ck = ωk∆c, ∀k ∈ K, (32b)
ωk ∈ Z+, (32c)
(24b) and (24c). (32d)

However, the challenge to exploit the lemma 4 is how to
find an optimal ν∗. Unlike the classical waterfilling problem,
the optimal solution in (25) consists of the computational error
probability ε2,k with respect to assigned non-linear workload
ck. Furthermore, instead of allocating the limited resource to
nodes, our problem is to assign all the workload cO to the
servers. Therefore, the previous geometrical approach [35] to
solve this problem cannot be applied for our case. To this end,
we propose following algorithm to find the optimal ν∗:

1) Let all servers be assigned with no workload initially,
i.e., ck = 0, ∀k ∈ K. Sort the servers by ascending
order of error probability εk. They are essentially
sorted based on the decoding error probability ε1,k.
Let all workloads be assigned to the first server, i.e.,
c1,temp = cO and ck,temp

k = 0. Moreover, ν is defined
by the maximum from the sum of ε1,k and ε2,k, i.e.,
ν = maxk{ε1,k + ε2,k}, where k ∈ K̂. Any server k
has a lower error probability than ν should be selected,
i.e., ak = 1 if ε1,k + ε2,k ≤ ν.

2) Move a slice of workload with the size of ∆c from the
first server to the second, i.e., c1,temp = c1,temp −∆c
and c2,temp = c2,temp +∆c. Let νtemp = maxk{ε1,k+
ε2,k}. If νtemp > ν, move the slice to the next server,
i.e., c2,temp = c2,temp − ∆c and c3,temp = c3,temp +

∆c. Repeat the process until the last element of K̂ or
νtemp ≤ ν.

3) Let ν∗temp = νtemp and deselect all servers that have
higher error probability than ν, i.e., let ak = 0, if
ν < ε1,k + ε2,k. Resort the servers by ascending order
of error probability εk.

4) Repeat 2) and 3) till ν cannot be reduced anymore.
Then, let ν∗ = ν∗temp, c∗k = ck and a∗k = ak.

With this algorithm, we are able to not only as-
sign all the workload, but also select the corresponding
servers. The complexity of the algorithm is relatively low.
In particular, the worst case of the algorithm requires
MK! log(MK!) times of operations and results in the com-
plexity of O(MK! log(MK!)) which is significantly lower
than O(2MK), i.e. the complexity of the design in Section IV-
B with exhaustive search. The pesudocode of the algorithm
is summarized in Algorithm 2.

Algorithm 2 for solving Problem (32) with integer task
partition model

1: Initialize the workload assignment and server selection:
c1,temp ← 0, ak ← 0, ck,temp

k ← 0, v∗temp = 0 and vtemp ← 1
2: Sort εk in ascending order according to (10)
3: Assign all workload to the first server: c1,temp ← cO
4: Calculate the initial waterflood: ν = max

k
{ε1,k + ε2,k}

5: while v∗temp < v do
6: assign the temporal optimal waterflood: v ← v∗temp
7: for k=1,...,K-1 do
8: Move a slice of workload: ck,temp ← ck,temp −∆c and
ck+1,temp ← ck+2,temp + ∆c

9: Calculate the temporal waterflood: νtemp = max
k
{ε1,k +

ε2,k}
10: if νtemp ≤ ν ‖ ck,temp == 0 then
11: Break
12: end if
13: end for
14: Assign the temporal optimal waterflood: v∗temp ← vtemp
15: Resort εk in ascending order according to (10)
16: end while
17: for k=1,...,K do
18: if ν < ε1,k + ε2,k then
19: Select the server: ak ← 1
20: end if
21: end for
22: Assign the optimal solution: v∗ ← v∗temp, c

∗
k ← ck, a

∗
k ← ak,

∀k ∈ K

V. FRAMEWORK DESIGN AND WORKLOAD
ASSIGNMENT FOR TIME-DEPENDENT SYSTEM: A

REINFORCEMENT LEARNING APPROACH

Although we are able to provide an optimal solution
analytically in the previous section with the assumption that
the CSI is perfect known for every server and the queue
length of server is independent to the previous actions with
bit-wise partitionable tasks. In this section, we study the more
realistic scenario, where only outdated CSI is available and
the current queue length in the server is influenced by the
assigned workload from previous frame. Denote m the frame
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index, (1) and (5) can be respectively reformulated as

h
(m)
k = ρh

(m−1)
k +

√
1− ρ2∆hk, (33)

D
(m)
k =

c
(m)
k

fk
+ max

{
c
(m−1)
k

fk
− T pre

k , 0

}
+Q

(m)
k , (34)

where h(m−1)
k is the known previous channel gain of server

k at frame m−1, ρ is the coherent factor and ∆hk is an i.i.d.
random variable. In addition, c(m)

k is the assigned workload
to server k in frame m and T pre

k is the time gap between
previous computation phase and current computation phase.
Although T pre

k may vary based on the frame structure and
task arriving rate, the discussion of randomness of T pre

k is
beyond the scope of this paper. In the rest of the section, we
consider that it is constant over all frames. Furthermore, the
task follows the integer task partition model we introduced in
Sec. IV-C. Note that the error probability in the current frame
is influenced by the actions in previous frames and the channel
in current frame also correlated to the previous. Therefore,
in such time-dependent case, it is not meaningful to provide
a system design per frame, i.e., aiming at minimizing the
instantaneous error probability. We thus focus on the average
error probability by jointly selecting servers and allocating
the blocklength and workload in the long-term. We denote by
b(m) ={n(m),A(m),C(m)} ∈ B the action of each frame and
by B = {b(1), ...,b(m), ...} the actions of all frames, where
B is the action space containing all possible combinations of
the blocklength n, partitioned workload C = [c1, ..., cK ] and
server selection A=[a1, ..., aK ]. Then, we have the following
optimization problem:

minimize
B

∫ ∞
0

∞∑
m=1

ε
(m)
O

K∏
k=1

f
Γ
(m)
k

(γ
(m)
k )dγ(m) (35a)

subject to (12b)− (12g),

where f
Γ
(m)
k

is the PDF of γ
(m)
k . Clearly, the proposed

algorithm in the previous section can no longer be applied
for the time-dependent scenario and to obtain the global
optimal results requires prior channel knowledge. Therefore,
an analytical solution is highly intractable. To overcome the
challenge, we refer to a DRL approach aiming to minimize
the overall error probability by jointly optimizing the coop-
erative server selection, frame structure design and workload
assignment.

A. State and Action Space
In DRL algorithm, an agent is trained by interacting

with the environment. At m-th time frame, the agent ob-
tains the current observation of the environment denoted by
x(m) = {γ(m), c(m)}, which is composed from all SNR and
workloads of the previous frame, i.e.,
• γ(m) = [γ

(m−1)
1 , γ

(m−1)
2 , . . . , γ

(m−1)
K ]: vector of length

K containing previous SNR of each link.
• c(m) = [c

(m−1)
1 , c

(m−1)
2 , . . . , c

(m−1)
K ]: vector of length

K containing size of previous workload of each server.
Moreover, in order to exploit the impact of previous offloading
decision on the computation error at the current time frame
as well as the correlation of the channel states in adjacent
frames, the state of the environment at frame m is defined as

the set of Wht historical observations, which is denoted as:
s(m) = {x(m), x(m−1), . . . , x(m−Wht)} ∈ S, where S is the
state space.

The action made by the agent is b(m) =
{n(m),A(m),C(m)} ∈ B. We consider a reasonable
range of n as [100, TTs ] and the integer partitioned workload
model ck = ωk∆c as explained in Section IV-C2. Thus, at
m-th time frame the agent decides on action b(m) based
on s(m) according to policy π(s(m)), which leads to the
next state s(m+1). The sequence of dynamic transitions
T (s(m+1)|s(m), b(m)) represents a Markov decision process.

B. Reward Function
In order to learn and update the decision policy, the

agent requires a reward regarding its action. The reward
should reflect the performance of the action in terms of the
resulting error probabilities. Since the absolute value of error
probabilities are normally quite small, it is more convenient
to consider their order of magnitude. Therefore, we define
the reward function depending on the error probability as:
r(m)(εO) = − log10(ε

(m)
O ). In this way, the range of reward

is restricted and the learning process is more stable, particu-
larly when the channel varies dramatically. Furthermore, in
the case that the action leads to an infeasible result, i.e.,
εk ≤ εmax,∀k ∈ K is not satisfied, the agent would obtain
a minimum reward with r(m) = 0.

The objective for the agent in each interaction with the
environment is to optimize policy π(s). Specifically, for a
given state s(m), the policy aims at finding the action that
returns the highest reward for future state-action processes.
Thus, the optimal policy can be written as [40]

π? = arg maxE[R(m)|π], (36)

where R(m) = r(m) + γdfR
(m+1) is the accumulated dis-

counted reward. γdf ∈ [0, 1] is the discount factor for
weighting future rewards into the current policy.

C. Deep Deterministic Policy Gradient
We adopt an actor-critic model based on DDPG algorithm

with an actor that makes decisions according to its actor
function µ3 and a critic that evaluates the action made by
actor based on its Q-function Q. The actor function µ and
the Q-function Q of the critic are approximated by DNNs
as actor network with parameters θµ and critic network with
parameters θQ, respectively.

The Q-value generated by the critic network represents
the quality of an action b(m) for a certain state s(m) as
Q(s(m), b(m)) = E[R(m)|s(m), b(m)]. With the target policy
being deterministic and µ : S ←− B, the Q-value can be
formulated using the Bellman equation as [37]

Q(s(m), b(m)) = E[r(s(m), b(m)) + γdfQ(s(m+1), µ(s(m+1)))].
(37)

Since the Q function guarantees convergence to the op-
timal point with Q(m) −→ Q? as m −→ ∞ and with
E[∇bQ(m)(s, b)|b=µ(s)∇θµµ(s|θµ)] being the off-policy de-
terministic policy gradient, the critic can be used to adapt the

3Note that the actor function µ actually represents the policy function due
to its deterministic property.



10

action function. Thus, the actor is learned by applying the
chain rule to the expected return from the start distribution J
with respect to the actor parameters θµ, which results in the
policy gradient [21]

∇θµJ ≈ Es(i) [∇bQ(s, b|θQ)|s=s(i),b=µ(s(i))∇θµµ(s|θµ)|s=s(i) ].
(38)

On the other hand, as mentioned before the critic network
maps the states and actions to a Q-value, which is similar to
the Q-network in deep Q-learning [20]. The critic network
updates its parameters θQ by minimizing the loss L as

L(θQ) = Ei[(y(i) −Q(s(i), b(i)|θQ))2], (39)

where y(i) = E[r(i) + γdfQ
′(s(i+1), µ′(s(i+1)|θµ′)|θQ′)] is

the target Q-value following the Bellman equation, and it
is computed by the extra introduced target actor network
µ′(s|θµ′) and target critic network Q′(s, b|θQ′) to avoid
unstable training and local optimum [20]. The parameters of
target networks θµ′ and θQ′ are similar to θµ and θQ with a
time delay and slowly updated with the update ratio τc � 1
as θµ′ ← τcθµ + (1− τc)θµ′ and θQ′ ← τcθQ + (1− τc)θQ′ .

Using the policy gradient ∇θµJ and loss L(θQ) the param-
eters θµ and θQ are updated iteratively using the Stochastic
Gradient Descent (SGD) as

θµ = θµ − αµ∇θµJ, (40)
θQ = θQ − αQ∇θQL, (41)

where αµ and αQ are the learning rate of actor and critic
networks, respectively.

In order to break the similarity of subsequent training
samples and obtain a better convergence for function ap-
proximator, experience replay is used, where the transitions
of (s(m), b(m), r(m), s(m+1)) are stored in a replay memory
of size Umem. At each time slot a random minibatch of
size Ub is sampled from the memory for performing a SGD
update. By sampling from the large replay buffer the training
at each frame is proceeded over a large set of uncorrelated
state transitions [21]. Furthermore, to explore the environment
with a continuous action space, noise is added to the decided
action in the training phase. We adopt the Ornstein-Uhlenbeck
process to produce correlated exploration [39]. Specifically,
during training the action at m-th frame is then composed to
b(m) = µ(s(m)|θ(m)

µ ) +N (m), where N (m) = X(m) +X
′(m)

and X(m+1) = N (m). X
′(m) follows Ornstein-Uhlenbeck

process as

X
′(m) = θOU

(
µOU −X(m)

)
dt + σOUω

′(m), (42)

where θOU denotes the mean reversion rate, µOU denotes the
mean reversion level and σOU indicates the influence of the
random variable ω′(m).

The complete proposed DDPG algorithm is presented in
Algorithm 3 and an illustration is shown in Figure 3 on the
next page.

VI. SIMULATION RESULTS

A. Parameterization
In this section, We evaluate our proposed design via the

numerical simulations. The following parameter setups are
considered in the simulation. First, consider the UE is located
in the center of an area with radius of 50 m. To describe

Algorithm 3 for Deep Deterministic Policy Gradient based
Offloading

1: Randomly initialize actor network µ(s|θµ) and critic network
Q(s, b|θQ) with weights θµ and θQ

2: Initialize target networks µ′ and Q′ with weights θµ′ ← θµ,
θQ′ ← θQ

3: Initialize replay memory Dmem with size Umem

4: Initialize a random noise N (1)

5: Receive initial observation state s(1)

6: for m = 1, 2, 3, . . . do
7: Select action b(m) = µ(s(m)|θµ) +N (m)

8: Execute action b(m) and obtain reward r(m) and observe new
state s(m+1)

9: Store transition (s(m), b(m), r(m), s(m+1))
10: Sample a random minibatch of Ub transitions

(s(i), a(i), r(i), s(i+1))
11: Set y(i) =r(i)+γdfQ

′(s(i+1), µ′(s(i+1)|θµ′)|θQ′)
12: Compute the loss and update via SGD:

L(θQ) =
1

Ub

∑
i

(y(i) −Q(s(i), b(i)|θQ))2

θQ = θQ − αQ∇θQL(θQ)

13: Compute the sampled policy gradient and update via SGD:

∇θµJ (43)

≈ 1

Ub

∑
i

∇bQ(s, b|θQ)|s=s(i),b=µ(s(i)) · ∇θµµ(s|θµ)|s=s(i)

θµ = θµ − αµ∇θµJ

14: Update the target networks:

θQ′ ← τcθQ + (1− τc)θQ′

θµ′ ← τcθµ + (1− τc)θµ′

15: end for

the wireless channel, we set carrier frequency F = 2.4
GHz, thermal noise power N0 = −174 dBm/Hz and transmit
power P = 20 dBm. Furthermore, we consider the path-
loss follows the model in [36], which can be written as
PL = 17.0 + 40.0 log10(dserver) for F = 2.4 GHz, where
dserver is the distance between UE and server. The duration
of symbol is set as Ts = 0.025 ms. The input data is set as
τ = 1600 bits and the total workloads cO = 24 Mcycles.
we set the CPU-frequency of each servers as f = 3 GHz,
while the task follows Poisson arriving model with rate λ = 3
Mcycles/s. Therefore, the shape parameter ξ = −0.0214
and scale parameter σ = 3.4955 × 106 with a threshold
d = 5.7ms above 99.9% reliability are obtained. Finally, we
set the total delay tolerance as T = 25ms and the maximal
error probability threshold as εmax = 0.01. In the following,
we start with evaluations of the proposed designs by means
of simulations under the above parameterization.

B. Performance of System with Time-Independent Servers and
Perfect CSI

We first evaluate the system performance of the scenario
with perfect knowledge of CSI and MEC server status. We
start with Fig. 4 to present the error probability of a selected
link ε1 versus the duration of time slot t1 under uniformed
distance dserver of 20m and 50m, as well as assigned workload
c1 of cO/2 and cO/4. First , we can observe that the error
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Fig. 3: Deep Deterministic Policy Gradient.
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Fig. 4: The error probability in the selected link versus the duration
of communication phase t1 with different setups of the average
transmission distances dserver (from the UE to servers) and the
average assigned workloads c.

probability is convex in t1 with variant setups, which confirms
our analytical result in Lemma 1. Secondly, the optimal
solutions of t1 vary with different values of distance dserver

(between the servers and UE). When we have a short dserver,
the system prefers also a small t1. On the other hand, if we fix
dserver, the value of c barely influences the optimal solution
of t1. Furthermore, it shows that one possible improvement
of the reliability is to select more servers, which corresponds
to reduce c of each server. However, such approach becomes
significantly inefficient, if the distance between the server and
UE is relatively far e.g., dserver = 50m.

Next we present Fig. 5 to further investigate the impact of
server selection to the system performance. We plot the end-
to-end error probability εO versus the total number of servers
K under both homogeneous scenario (servers with same
distances from the UE) and heterogeneous scenario (servers
with different distances from the UE). Firstly, The reliability
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Fig. 5: The overall error probability εO versus the number of
available servers K with homogeneous servers or heterogeneous
servers.

of the whole network is improved by increasing the number of
available servers regardless of scneraio types. This observation
coincides with the results from Fig. 4. However, adding
more servers brings lesser performance improvement when K
becomes relatively large, i.e., the slope of the curves decreases
when K increases. In such scenario, the bottleneck of the
system lies on the computation error. It is worth to mention
that by applying the proposed design, the reliability of the
considered network outperforms other approaches. More im-
portantly, owning to our design, introducing more additional
servers brings more considerable performance improvement,
comparing to the rest cases. Furthermore, it shows the im-
portance of having the proposed server selection method. In
particular, it is not always optimal by adding more server, if
we simply select all available servers deployed in the network
(only keeps the workload assignment process of the proposed
algorithm). In fact, it can worsen the performance when K is
already large and the diversity of SNR is high. The system
can even fail to find a feasible solution if it selects a server
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Fig. 6: Overall error probability εO versus total workloads cO with
available server size K=2 and K=6. The proposed design is provided
along with the case selecting all servers and selecting single best
server. In addition, the solution with exhaustive searching is also
shown for comparison.

with an extreme low SNR. It also implies that the proposed
joint design is more important in practical scenarios with
heterogeneous servers.

At the end of this subsection, we evaluate the impact of
the total workloads on the reliability of the considered MEC
networks, while comparing the performance of the proposed
design with two low-complexity approaches, i.e, selecting all
available servers and selecting single best server with highest
SNR. In addition, we also show the results of exhaustive
search to illustrate the gap between our design and the global
optimum. The results are shown in Fig 6. We observe that all
the overall error probability curves are increasing in cO. In
particular, these curves increase in different manners. Firstly,
the performance with proposed design advances significantly
comparing to the case without a proper server selection
scheme (simply selecting all servers) regardless of setups.
Subsequently, such performance advantage of the proposed
design becomes more significant for the scenario, where
more servers are available in the network. This phenomenon
coincides with the results observed from Fig. 5. Interestingly,
we can observe that if we select all servers or select only
the single best server, the performance curves of cases with
K = 6 and K = 2 are across with each other. Moreover, when
the workload is low, selecting the single best server is a better
strategy, in comparison to selecting all servers. This implies
that if the system does not select the server properly , letting
more servers compute the task holds back the performance
when the task is computation-intensive with heavy workload.
Furthermore, with the proposed server selection process, the
system benefits even more significantly from having more
servers (for selection) under the cases with relatively heavier
workloads. Furthermore, the proposed design matches with
the exhaustive search very well. In fact, when the error
probability is low, the impact of high order terms ε1ε2 is
so tiny so that the influence to the optimal solution is barely
visible. Since the proposed design is essentially to solve a
mixed integer convex problem, the (nearly) global optimal
solution can be obtained.

C. Performance of Systems with Time-Dependent Servers and
Outdated CSI

In this subsection, we evaluate the system performance
under the scenario where only outdated CSI knowledge are
available and the statuses of servers are dependent on the
previous actions. We extend the simulation parameters with
ρ = 0.9 and T pre

k = 6ms. The performance of DDPG
algorithm, denoted as DDPG in the figures, is compared to
the benchmark, denoted as AS in the figures. The benchmark
results are obtained from the heuristic way, where decisions of
frame structure, workload assignment and server selection are
based on the analytical solution in section III by considering
average channel gain based on the outdated CSI and ignoring
the influence of current actions at time slot m to the future,
i.e., R(m+1) = 0.

The parameters setting for DDPG network as follows: The
actor network consists of 4 hidden layers with 32 and 64
neurons. The critic network consists of 2 hidden layers for the
action input with 32 and for the state input with 16 neurons.
We apply batch normalization for the input of both the actor
and critic networks, which improves the training stability in
DDPG [21]. The learning rate of the actor and critic are
set as αµ = 0.00005 and αQ = 0.0001, respectively. We
use a discount factor γdf = 0.3. For random exploration we
consider θOU = 0.5 and σOU,max = 0.8 with σOU decreasing
to σOU,min = 0.1. In training process the size of each sampled
batch is set as Ub = 512. The agent learns for a total of 400
episodes for each scenario, where the network is trained for
Mtrain = 1000 times with correlated channel realizations in
each episode. To capture the overview of the trained network
over the fading channel realizations, we take the log-average
error probability εO,log = exp

(
1

Mtrain

∑Mtrain

1 log
(
ε

(m)
O

))
as the performance metric. First, in Fig. 7, the log-average
error probability versus training episodes is depicted. It is
observed that in both cases, where the number of available
servers is K = 2 (the top subplot) and K = 4 (the
bottom subplot), the error probability converges over episodes
and the proposed DDPG algorithm eventually outperforms
the analytical solution. Although increasing the number of
available servers K improves the performance as expected, it
is also worth to mention that it also requires more training
episodes to converge. This is due to the fact that increasing
K not only introduces more possible combinations of server
selection, but also increases the possible frame structures and
workload assignments accordingly, resulting a significantly
larger action space.

Next, we investigate the influence of coherent coefficient
to the system shown in Fig. 8, which depicts the log-average
error probability versus episode over training duration with
a high coherent channel with correlation coefficient ρ = 0.9
and the low coherent channel with ρ = 0.1. Similarly, the
error probability decreases over the training and converges at
the end for both kind of channels. However, the convergence
behaviour with the low coherent channel is more unstable than
with the high coherent one. Moreover, ρ = 0.1 implies that
the channel is nearly random and independent at each frame,
where one small change of the action that the agent chooses,
e.g., increase of blocklength or increase workload, leads to
the volatility of performance. In spite of that, our DDPG
algorithm still performs better than the benchmark. Finally, we
show the impact of total frame duration T and total workload
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(a) K = 2 with fixed ρ = 0.9.
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(b) K = 4 with fixed ρ = 0.9.

Fig. 7: Log-average error probability versus episodes of training for
outdated CSI scenario with ρ = 0.9. Two cases with K = 2 and
K = 4 are considered.
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(a) ρ = 0.9 with fixed K = 3
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(b) ρ = 0.1 with fixed K = 3

Fig. 8: Log-average error probability versus episode in outdated CSI
scenarios with different CSI accuracy, i.e.,ρ = 0.9 and ρ = 0.1. In
addition, K is set to 3. In addition, the case selecting all servers and
selecting single best server is also sown for comparison.

cO to the system performance. In particular, we compare the
proposed DDPG algorithm with the analytical solution as
well as two low-complexity approaches. It is shown that both
increasing available T and decreasing required cO improve the
reliability performance. More interestingly, we can find that
the DDPG algorithm shows advantages when the system has
more resources, e.g., more transmission and computation time
in the subfigure (a), or less last, e.g., less required workloads
in the subfigure (b). We can also observe that the gap becomes
slighter in the other way around. However, the performance
in those cases are already non-reliable, which are not the
target scenario of our works. Furthermore, it also confirms
the necessity of server selection in comparison to simply
offloading the task to all available servers. In particular, when
the workload is low and the frame duration is long, with a
high channel correlation selecting the best server is actually

w/o selection single best AS DDPG

Fig. 9: Log-average error probability versus (a) total frame duration
T and (b) total workload cO with K = 3 and ρ = 0.9 based on
outdated CSI.

a decent strategy, since a strong link is unlikely to become
extremely worse in the next frame. Otherwise, we should
select more servers to mitigate the risk of extreme cases.
Therefore, it shows the advantage of the proposed DDPG from
both analytical and practical perspectives.

VII. CONCLUSION

In this work, we proposed a reliability-optimal design in
a multi-server edge computing network by jointly optimally
selecting multiple servers and optimally allocating the al-
lowed time for the communication and computation phases.
In particular, both the communication errors due to FBL
impact and computation errors caused by delay violation
are taken into account in the characterization of the overall
error probability. Under the assumption of the system with
time-independent servers and perfect CSI, we formulated
an optimization problem which minimizes the overall error
probability of the whole service within the maximal allowed
service delay. Based on the analysis of the decomposed
problems, we reformulated the original problem as a MICP
problem, which can be solved efficiently. For scenario with
the time-dependent servers and outdated CSI, we propose a
DRL approach with the deep deterministic policy gradient
method to minimize the error probability while taking the
future reward into account.

The simulation results confirmed our analytical model and
verified the applicability of our DRL approach. Moreover, the
performance advantages of both designs have been shown
in the corresponding scenarios. In particular, the proposed
analytical design under the assumption of perfect CSI and
time-independent servers is able to obtain the global optimum
in such scenario. On the other hand, as this design aims at the
instantaneous reliability performance, it is not preferred for
the scenarios where the CSI is outdated (but correlated with
the current one) and the status of a server is also correlated
in time (i.e., the decisions of servers selection and workload
allocation in one frame influence the statuses of the servers in
the next frame). At the same time, the DRL based approach
shows a higher performance owning to considering a long
term performance by taking the future reward into account.
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Although in the considered system the feedback phase is
ignored, it should be pointed out that the proposed design
can be extended to scenarios with practical assumptions on
the feedback. In particular, with consideration of the feedback
time cost and feedback error probability, Lemma 3 also holds
after certain extensions in the time-independent case, while
for the time-dependent case the DDPG algorithm could also
handle the new scenarios with an increased action space,
which are interesting extensions as our future works.
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