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Abstract

In this paper, we study a full-duplex (FD) relaying network operating with finite blocklength (FBL)

codes. Based on Polyanskiy’s FBL model, we characterize the FBL reliability of the relaying network

under both decode-and-forward (DF) and amplify-and-forward (AF) relaying schemes. Based on the

characterisation, we provide reliability-optimal designs via optimal power allocation for both schemes

in a single-carrier scenario. In particular, we prove that under the FD DF relaying scheme the (tightly

approximated) overall error probability is convex in the transmit power at the relay. In addition, we

show that minimizing the overall error probability of the FD AF relaying is equivalent to maximizing

the overall signal to interference plus noise ratio (SINR), which is further proved to be pseudo-concave.

Then, the designs for a single-carrier scenario are further extended to a multi-carrier scenario with a joint

power and data allocation among carriers. In particular, for either the FD DF or FD AF relaying scheme,

a joint optimization problem is reformulated to a single problem maximizing the reliability via finding

and achieving the optimal SINRs, while auxiliary variables are introduced in FD AF relaying to facilitate

the reformulation. Based on mathematical analysis, we respectively construct convex approximations and

subsequently propose iterative algorithms, with which the error probability is reduced iteratively until

an eventual convergence to an efficient suboptimal value. Hence, a corresponding suboptimal data and

power allocation solution can be constructed for the multi-carrier scenario. Via numerical analysis, we

validate our analytical model and the proposed allocation algorithms. The FD DF and FD AF relaying

schemes are compared with direct transmission in both single-carrier and multi-carrier scenarios, and the

benefits of applying FD relaying schemes and joint optimization among multiple carriers are observed.

Index Terms

Finite blocklength, full-duplex relaying, error probability, resource allocation, multiple carriers.

The material in this paper has been presented in part (i.e., the main part of Section III besides the proof of Proposition 1) at
the IEEE International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, in Aug. 2019 [1].
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I. INTRODUCTION

In the design of future wireless networks, low latency and high reliability are two key merits to

enable delay-sensitive and mission-critical applications of next-generation wireless networks [2],

[3], such as autonomous driving, virtual/augmented reality (VR/AR), remote surgery and indus-

trial automation [4]–[6]. In the fifth generation (5G) and sixth generation (6G), this concept is

called ultra-reliable low-latency communication (URLLC). For example, according to the recent

research article [7] and standard in 3GPP [8], URLLC applications, such as factory automation

and VR/AR, generally require a delay bound of 1–10 ms and a packet error probability of

10−5–10−7, while the requirements for remote surgery are preferred to be even more critical.

Based on the transmitted data sizes, we distinguish two URLLC applications. One is the

typical short packet transmission, in which the data size is generally small. As a typical scenario,

a reporting sensor continuously reports time-sensitive information of several bits describing the

state of the target, e.g, traffic, machine working states and so on. For such applications with a

relatively lower data rate requirement, researchers have contributed to improve the performance

with respect to reliability [9] and energy efficiency [10], [11]. The second type of the applications

has relatively larger data sizes, e.g., the VR/AR or remote surgery scenarios with real-time

video streams. In other words, due to the latency constraint and frequent update demand, these

applications require the network to provide URLLC transmissions while supporting relatively

higher (equivalent) date rates, which makes the system design more challenging. In fact, with

a given latency constraint and a high coding rate target, a system could anyway send out these

data before the delay deadline. But the high reliability of such transmission is extremely difficult

to be guaranteed.

Fortunately, there exist many reliability enhancement technologies. Among them, relaying has

been proved to be an effective way to provide significant improvements on the transmission

reliability [12] and supporting a relatively higher coding rate [13], [14]. In comparison to the

direct wireless communications, by applying an additional transceiver as a relay, the destination

may receive a much stronger signal which is received by the relay from source node and then

forwarded to the destination through a possibly better wireless channel. As for the relaying

technologies, there are two main forwarding schemes [15], i.e., decode-and-forward (DF) scheme

and amplify-and-forward (AF) scheme. By applying a DF scheme, the relay first decodes the

received signal and then forwards a re-encoded one if the decoding process is successful, while



3

it forwards nothing when the decoding process fails. On the other hand, an AF relaying scheme

directly scales the received signal without decoding, where the destination always receives a

signal from the relay.

Typically, a relay node is operated in a half-duplex (HD) mode [12]–[15],where one from

the source and relay is idle when the other one is performing transmission, i.e., the source

and relay transmit one at a time. By implementing the advanced self-interference cancellation

(SIC) techniques [16], [17], full-duplex (FD) relaying is capable of operating transmission and

reception simultaneously. As a result, within the same time block, deploying an FD relaying

significantly improves the throughput [18]–[20]. From another point of view, when the target of

throughput or data rate are given, HD relaying needs to set a doubled data rate at each hop to

achieve the equivalent end-to-end data rate target. Differently, FD relaying just needs to set the

data rate of each hop same as the target, which is expected to have a better reliability. Moreover,

by exploiting multiple subcarries for the two hops of the FD relaying and performing resource

allocation among these subcarries, the above advantages of deploying DF relaying with respect

to throughput and reliability can be further promoted [21], [22].

However, existing studies on the FD relaying are conducted based on an ideal assumption

of communicating arbitrarily reliably at Shannon’s capacity, which is only true when the code

blocklengths become infinitely long, i.e., in the so-called infinite blocklength (IBL) regime.

Unfortunately, in a practical system the codes can only have finite blocklengths (FBL). In

particular, when the network is required to operate under a low-latency constraint, the coding

blocklengths are required to be short. Hence, it is essential to study the FBL performance

while explicitly taking into account decoding error probabilities in the performance analysis and

system design of networks supporting URLLC applications. The authors in [23] have rigorously

characterized the relationship in the FBL regime among the blocklength, achievable coding rate

and error probability. Moreover, the system performance of an HD relaying network within FBL

regime has also been analytically studied in [24], [25]. The FBL throughput in both HD and

FD relaying networks has been recently approximately discussed in [26], where the Q-function

in the FBL error probability model is approximated by a linear function. However, to the best

of our knowledge, a fundamental analytical study on FBL performance characterization of the

FD relaying schemes (including and comparing AF and DF relaying schemes) as well as the

resource allocation among multiple carriers aiming at maximizing the reliability while supporting
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high data rate and low latency transmissions, is still missing.

In this work, we consider an FD relaying network, where the transmissions are operating

with FBL codes due to the low latency requirements. We characterize the FBL performance and

provide joint power and data allocation designs for such network, where both DF relaying and

AF relaying schemes are considered. The main contributions of our work are listed as follows:

• FBL Reliability Characterisation: We characterize the reliability model for an FD relaying

network in FBL regime. The error probabilities under both DF and AF relaying schemes

are derived.

• Power allocation in Single-Carrier Scenario: For a single-carrier scenario, an optimal

power allocation design between the two hops of the FD relaying is provided for both DF

and AF scenarios. In particular, we prove the convexity of the power allocation problem

in the FD DF relaying case and the pseudo-concavity of signal-to-interference-plus-noise

ratio (SINR) in FD AF relaying, respectively, with which the optimal solution of the power

allocation problem can be efficiently obtained.

• Power and Data allocation in Multi-Carrier Scenario: For multi-carrier scenario, a joint

power and data allocation among carriers is considered. We first rigorously prove the joint

convexity of the error probability with respect to SINR and data size, which can largely

assist the related system analysis in FBL regime. Then, we propose iterative algorithms for

FD DF and FD AF relaying cases, which have resulted in efficient suboptimal solutions.

• Numerical Investigation: Finally, the characterized FBL reliability model and the proposed

algorithms are validated via numerical analysis. In addition, via a set of comparisons, we

confirm the benefits of deploying FD relaying, and the advantages of jointly allocating

resource among carriers.

The organization of the paper is as follows. We first introduce our considered FD relaying

system and review the FBL performance model in Section II. Then, in Section III, considering

a single-carrier scenario and a power constraint, we study the reliability performance of the

FD relaying network under DF and AF relaying schemes. After that, the work is extended into

multi-carrier scenario in Section IV and two iterative algorithms are correspondingly proposed.

Finally, our work is numerically evaluated in Section V and concluded in Section VI.
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Fig. 1. Example of the considered two-hop FD relaying scenario.

II. PRELIMINARIES

In this section, we first introduce our FD relaying system model under both the DF and AF

relaying schemes. Subsequently, the FBL performance model is reviewed.

A. System model

We focus on a simple two-hop network with a source node S, a destination node D and an FD

relay R as schematically displayed in Fig. 1. The data packet of D bits generated by source node

is assumed to be relatively large. In Fig. 1, we show an example scenario of remote surgery, in

which the video stream (with a relatively large data packet) is required to be frequently updated

in time. We assume the relatively large attenuation between S and D forces the data transmission

from S to D to be operated via two hops, namely from S to R then from R to D. To support this

relatively high end-to-end (from S to D) data rate, an FD relaying is applied, which is capable

of reducing data rate on each link and correspondingly enhancing the transmission reliability,

in comparison to HD relaying. In addition, the transmission of a packet has a fixed end-to-end

latency constraint. And we assume that the data packet is immediately transmitted after being

generated and will be dropped when the latency constraint is violated (i.e., assuming the latency

is more important than missing a short slide of the video stream). In other words, the data

packet has no queuing delay. At the same time, we assume the other delays in addition to the

two-hop transmission, e.g., due to data generating, processing and decoding, are constant (or

upper-bounded). Hence, the maximal allowed total blocklength, denoted by M , for the two-hop

relaying can be determined. Finally, we consider an ultra-reliable transmission scenario [27]

where the error probability of the data transmission via the two-hop relaying network should be

(much) lower than 10−1.

Furthermore, both the DF and AF relaying schemes are considered. Accordingly, the resulting

different frame structures are shown in Fig. 2. For FD DF relaying, the relay will wait for the

complete reception of all the symbols from source for a successful decoding and then forward

the re-encoded data packet to the destination subsequently. Due to the existence of a neces-

sary decoding process, the signal reception and forwarding cannot be operated simultaneously.
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Fig. 2. Frame structures of the considered FD DF and FD AF relaying scenarios.

Therefore, the total blocklength M is equally divided by a blocklength mDF, which satisfies

2mDF =M , for each relaying hop under FD DF scheme. On the other hand, the relay under FD

AF scheme allows directly amplifying and forwarding the received radio frequency (RF) signal

from source to the destination. Hence, the received symbols can be immediately forwarded

without any decoding process. We denote by n the smallest amount of symbols that can be

recognized and forwarded by the FD AF relay. As a result, the blocklengths for both relaying

hops are equal to mAF =M − n, as shown in Fig. 2. For an ideal case where each symbol can

be immediately detected and forwarded by FD AF relay, the forwarding process will operate

per symbol, i.e., n = 1. In addition, in FD relaying, the AF scheme also induces deteriorated

received SINR which is caused by the direct amplification of self-interference and noise [28].

B. Channel Model

In particular, we start with the single-carrier scenario to facilitate the power allocation in

Section III. After that, the topology and channel model will be directly extended to multi-carrier

scenario, as performed in Section IV. Here, we denote by h1 and h2 the channel coefficients of

the S-R backhaul link and R-D relaying link, and denote by Li and zi the gains of the path-loss

and the channel fading. Then, we model the channel gain as |hi|2 = Lizi, i = 1, 2. Note that

in the considered low-latency scenario, the period of the two-hop transmission is significantly

short in comparison to the channel coherence time, so that the fading gains can be treated as

a constant within a transmission period. In addition, due to imperfection of self-interference

cancellation in FD techniques, the loop interference at the FD relay is significantly but not

completely reduced. we denote by hRI the residual loop interference at the relay. We assume

perfect channel state information (CSI) at the receivers and in particular at the source. The total

power budget/constraint for transmitting a data packet in a transmission period is pt, while the

transmit power at the source and the relay are denoted by pS and pR, respectively.

For both DF and AF schemes, the expressions of the received signals at the relay are the same as

y1 =
√
pSh1x+

√
pRhRIxRI + w1, (1)

where x is the transmitted signal from S and xRI is the self-interference signal from R, both of

which have a unit power. In addition, w1 represents the additive white Gaussian noise (AWGN)
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in the S-R link with power σ2
1 . Then, the signal to SINR at the relay is described as

γ1 =
pS|h1|2

pR|hRI|2 + σ2
1

. (2)

On the other hand, the received signals at destination have different expressions in the two

schemes. In particular, the received signal at the destination under the DF scheme is given by1

yDF,2 =
√
pRh2x+ w2, (3)

where w2 is the AWGN in the R-D link with power σ2
2 , resulting signal-to-noise ratio (SNR)

γDF,2 =
pR|h2|2

σ2
2

. (4)

For the FD AF relaying, y1 is simply amplified and forwarded, i.e., resulting in an incidentally

amplified residual self-interference and noise. The received at destination is thus given by

yAF,2 = (
√
pSh1x+

√
pRhRIxRI + w1)

√
GpRh2 + w2, (5)

where G= 1
pS|h1|2+pR|hRI|2+σ2

1

is the amplifier gain. Then, the received SINR at the destination is

γAF,2=
GpSpR|h1|2|h2|2

Gp2
R|hRI|2|h2|2+GpR|h2|2σ2

1+σ
2
2

=
pSpR|h1|2|h2|2

p2
R|hRI|2|h2|2+pR|h2|2σ2

1+σ
2
2(pS|h1|2+pR|hRI|2+σ2

1)
.

(6)C. The FBL performance model

The FBL performance has been analyzed in [23] via applying the normal approximation. Later

on, the third-order term in the normal approximation is further addressed in [29] especially for

the AWGN channel, which leads to a higher performance accuracy. For an AWGN channel, the

coding rate r (in bits per channel use) with error probability 0<ε<1, SNR γ, and blocklength

m is shown to have the following asymptotic expression [29]:

r = R (γ, ε,m) ≈ C (γ)−
√
V (γ)

m
Q−1 (ε) +

log2m

m
, (7)

with the Shannon capacity C (γ) = log2 (1 + γ), channel dispersion V (γ) = γ(γ+2)

(γ+1)2
log2

2e, and

Gaussian Q-function Q (x) =
∫∞
x

1√
2π
e−t

2/2dt. By reformulating (7), the (block) error probability

can be expressed as:

ε = P (γ, r,m) ≈ Q

(
C (γ) + log2m

m
− r√

V (γ)/m

)
. (8)

As the FBL performance approximation with the third order term has been shown in [23], [29]

to be tight when the blocklength is larger than 100. For simplicity, existing works, e.g., [30],

1It should be pointed out that the DF relay only forwards the data packet to the destination when it decodes the signal from
the source successfully. Due to the FBL constraint, errors possibly appear in this step. The probability of the error will be later
on discussed in Section III.
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[31], usually assume the above approximations to hold with equality and exploiting them as the

rate and error expressions. Following the same idea, in our analysis we assume M ≥ 200 (which

is reasonable for practical two-hop relaying systems) and apply the equality in studying the FBL

performance of the FD DF and FD AF relaying schemes.

III. SINGLE CARRIER SCENARIO: POWER ALLOCATION FOR FBL RELIABILITY

In this section, we characterize the reliability models for both FD DF and FD AF relaying

schemes. In particular, we minimize the overall error probability of the two-hop transmission by

applying optimal power allocation under a given latency constraint M and a power consumption

constraint Mpt. We first discuss the FD DF relaying scheme and subsequently address the AF

relaying case.

A. Achievable FBL Reliability of FD DF Relaying

According to (2) and (8), the decoding error probability at the FD DF relay is obtained by

εDF,1 = P
(
γ1,

2D
M
, M

2

)
. Similarly, the decoding error probability at the destination is given by

εDF,2 = P
(
γDF,2,

2D
M
, M

2

)
. Hence, the overall error probability of transmitting a data packet via

the two-hop FD DF relaying is given by

εDF = εDF,1 + εDF,2 − εDF,1εDF,2 ≈ εDF,1 + εDF,2, (9)

while the approximation is tight due to the fact that εDF,1 +εDF,2 � εDF,1εDF,2 holds as we

consider a high-reliability network with max{εDF,1, εDF,2}< εDF ≤ 10−1. In the following, we

consider minimizing εDF,1+εDF,2 to obtain the achievable reliability of the FD DF scheme.

Obviously, εDF,1 + εDF,2 is influenced by the choices of pS and pR. Note that under the power

consumption constraint, we have M
2
pS +

M
2
pR =Mpt, i.e., pS + pR = 2pt. Hence, the achievable

reliability of the FD DF relaying can be obtained by solving the following optimization problem

min
pR

εDF,1 + εDF,2

s.t. pS = 2pt − pR,

0 < pR < 2pt.

(10)

To solve Problem (10), we provide the following proposition.

Proposition 1. Considering an FD DF relaying network supporting a reliable transmission

where target error probability εDF ≤ εmax, M ≥ Mmin and the SNR/SINR of each link γi ≥ 1

hold, the objective of Problem (10) is convex in pR when the relation
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εmax ≤ Q

(
2
√
2

0.37
√
Mmin

)
(11)

holds between Mmin and εmax.

Proof. According to (9), we prove the proposition by showing ∂2εDF,i

∂pR2 ≥ 0 for link i, ∀i ∈ {1, 2}.
In particular, we first show the convexity of εDF,i to γi by investigating ∂2εDF,i

∂γi2
, and then based

on the results discuss the sign of ∂2εDF,i

∂pR2 .

According to (8), we have
∂εDF,i

∂γi
=

1√
2π

exp

(
−
w2

DF,i

2

)(
−∂wDF,i

∂γi

)
, (12)

∂2εDF,i

∂γi2
=

1√
2π

exp

(
−
w2

DF,i

2

)(
wDF,i

(
∂wDF,i

∂γi

)2

−∂
2wDF,i

∂γi2

)
, (13)

where wDF,i(γi) =
C(γi)+

log2(M/2)
M/2

−2D/M√
2V (γi)/M

. In addition, the first and second order derivatives of

wDF,i to γi are respectively given by

∂wDF,i

∂γi
=

√
M

2

γi(γi+2)−
(
ln(1+γi)+

ln(M/2)
M/2

− 2D ln 2
M

)
(ln 2)3V (γi)

3
2 (1 + γi)

3
≥
√
M

2

γi(γi+2)−ln(1+γi)− 1
e

(ln 2)3V (γi)
3
2 (1 + γi)

3
. (14)

∂2wDF,i

∂γi2
=

√
M

2

(
(1+γi)− 1

1+γi

)(
2(1+γi)− 1

1+γi

)
−3
(
γi(1+γi)−ln(1+γi)− ln(M/2)

M/2
+ 2D ln 2

M

)
(ln 2)5V (γi)

5
2 (1 + γi)4

=

√
M

2

−(1 + γi)
2 + 1

(1+γi)2
+ 3

(
ln(1 + γi) +

ln(M/2)
M/2

− 2D ln 2
M

)
(ln 2)5V (γi)

5
2 (1 + γi)4

≤
√
M

2

1

(ln 2)5V (γi)
5
2 (1 + γi)4

[
−(1 + γi)

2 +
1

(1 + γi)2
+ 3 ln(1 + γi) +

3

e

]
.

(15)

where the inequalities hold due to the fact that ln(M/2)
M/2

− 2D ln 2
M
≤ ln(M/2)

M/2
≤ 1

e
. Denote f(x) =

x2+2x− ln(1+x)− 1
e
, x ∈ [1,+∞). Since f(1) = 1.939 > 0 and f ′(x) = 2x+2−1/(1+x) > 0

holds when x ≥ 1, we have f(x) ≥ f(1) > 0, ∀x ∈ [1,+∞). Applying this to (14), we have
∂wDF,i

∂γi
> 0, ∀γi ≥ 1. In addition, it can be also shown that −(1+γi)2+ 1

(1+γi)2
+3 ln(1+γi)+

3
e
< 0

for γi ≥ 1. Hence, ∂2wDF,i

∂γi2
< 0 holds, which results in ∂2εDF,i

∂γi2
> 0.

So far, we have studied the relationship between εDF,i and γi. Next, let us take into account

the relationship between γi and pR for i = 1, 2. When i = 2, it can be easily obtained from (4)

that ∂2γ2
∂pR2 = 0. Accordingly, we have

∂2εDF,2

∂pR
2

=
∂2εDF,2

∂γ2
2

(
∂γ2

∂pR

)2

≥ 0. (16)
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When i = 1, ∂2εDF,1

∂pR2 is given by

∂2εDF,1

∂pR
2

=
∂2εDF,1

∂γ1
2

(
∂γ1

∂pR

)2

+
∂εDF,1

∂γ1

∂2γ1

∂pR
2

=
1√
2π

exp

(
−
w2

DF,1

2

)(
∂γ1

∂pR

)2

−∂2wDF,1

∂γ1
2︸ ︷︷ ︸

<0

+
∂wDF,1

∂γ1︸ ︷︷ ︸
>0

wDF,1
∂wDF,1

∂γ1

−
∂2γ1
∂p2R(
∂γ1
∂pR

)2


 .

(17)

Furthermore, combining the power consumption constraint pS + pR = 2pt with (2), we have

γ1 =
(2pt−pR)|h1|2

pR|hRI|2+σ2
1

, from which we can obtain that
∂2γ1
∂p2R(
∂γ1
∂pR

)2 =
2|hRI|2(pR|hRI|+ σ2

1)

|h1|2σ2
1 + 2pt|h1|2|hRI|2

=
2|hRI|2

|hRI|2γ1 + |h1|2
<

2

γ1

. (18)

On the other hand, based on (14), we have

γ1
∂wDF,1

∂γ1

≥
√
M

2

γ1

(
γ1(γ1 + 2)− ln(1 + γ1)− 1

e

)
(ln 2)3V (γ1)

3
2 (1 + γ1)

3︸ ︷︷ ︸
g1(γ1)

, (19)

where g1(γ1) is a function only in γ1. Then, a monotonically increasing property of function

g1(γ1) in γ1 can be easily proved when γ1 ≥ 1, from which we can obtain that g1(γ1) ≥
g1(1) > 0.37 holds ∀γ1 ≥ 1. The proof is provided in Appendix A. As a result, it holds that
∂wDF,1

∂γ1
≥
√

M
2

0.37
γ1

, ∀γ1 ≥ 1. Recall the condition (11), we have

wDF,1 = Q−1(εDF,1) ≥ Q−1(εmax) ≥
2
√
2

0.37
√
Mmin

, (20)

when εDF,1 ≤ εmax. Therefore, when M ≥Mmin and γ1 ≥ 1, it holds that

wDF,1
∂wDF,1

∂γ1

≥
√

M

Mmin

2

γ1

≥ 2

γ1

>

∂2γ1
∂p2R(
∂γ1
∂pR

)2 . (21)

Then, by observing (17), we find that ∂2εDF,1

∂pR2 ≥0 holds if M≥Mmin, γ1≥1 and εDF≤εmax.

Remark. Note that in our model, considering practical systems, we have assumed the error

probability εDF ≤ εmax = 10−1 and the blocklength M ≥ Mmin = 200. Since εmax = 10−1

and Mmin = 200 satisfies the condition (11), the convexity of the objective function in problem

(10) is also guaranteed under these intuitive assumptions. It should also be pointed out that the

convexity also holds when we relax the constraint on blocklength M so that εmax = 10−1 and

Mmin = 36 (which is out of the assumption of this paper).

According to Proposition 1, there exists a global optimal solution to Problem (10), which can

be solved efficiently via convex optimization tools.
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B. Achievable FBL Reliability of FD AF Relaying

According to (8), the overall error probability of the transmission via a DF AD relay is

εAF = P
(
γAF,2,

D

M − n
,M − n

)
. (22)

We consider to minimize the error probability by applying optimal power allocation
min
pR

εAF

s.t. pS = M
M−npt − pR,

0 < pR <
M

M−npt,

(23)

where the first constraint is due to (M − n)pS + (M − n)pR =Mpt. According to the proof of

Proposition 1, by observing (12), it is clear that the error probability given in (8) is decreasing

in the corresponding SNR/SINR. Hence, solving Problem (23) is the same as maximizing γAF,2,

which is given by
max
pR

γAF,2

s.t. pS = M
M−npt − pR,

0 < pR <
M

M−npt.

(24)

Proposition 2. Problem (24) is a pseudo-convex problem.

Proof. By substituting pS = M
M−npt − pR into (6), we have γAF,2 =

A(pR)
B(pR)

where

A(pR) = −pR
2|h1|2|h2|2 + pR

M

M − n
|h1|2|h2|2pt, (25)

B(pR) = p2
R|hRI|2|h2|2 + pR

(
|h2|2σ2

1 − |h1|2σ2
2 + |hRI|2σ2

2

)
+ σ2

2

(
M

M − n
pt|h1|2 + σ2

1

)
. (26)

Note that both A(pR) and B(pR) are quadratic functions with respect to pR. It is easy to show

that A(pR) is concave in pR and B(pR) is convex in pR, respectively. According to the results

in Section 3.4.5 of [32], γAF,2 is pseudo-concave in pR under the constraint pS + pR = M
M−npt.

Hence, Problem (24) is pseudo-convex.

According to the Proposition 2, the Problem (24) can be efficiently solved by Dinkelbach

algorithm (in polynomial time) [33].

IV. MULTI-CARRIER SCENARIO: JOINT POWER AND DATA ALLOCATION FOR FBL

RELIABILITY

In this section, we extend the study to a scenario with L parallel carriers, where the channel

(of either the S-R link, the R-R self-interference link or the R-D) becomes a set of L channels

with different instantaneous fading gains. In particular, we denote on the l-th carrier the gains of
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{h1,l} {h2,l}

Source Relay Destination

{hRI,l}

...

...

...

Fig. 3. Example of the considered two-hop FD relaying scenario with multiple carriers.

the S-R channel, the self-interference channel and the R-D channel by |h1,l|2, |hRI,l|2 and |h2,l|2,

and let pS,l and pR,l represent the power allocated at the source and relay for the l-th carrier.

A. Achievable FBL Reliability of FD DF Relaying

Under the DF relaying scheme, the SNR of the l-th channel at the relay is given by γ1,l =
pS,l|h1,l|2

pR,l|hRI,l|2+σ2
1,l

, l ∈ L, where L ∆
= {1, ..., L}. In addition, the SNR of the l-th channel in the

second hop is given by γ2,l =
pR,l|h1,l|2

σ2
2,l

, l ∈ L.

In this subsection, we consider the case that the whole data packet with size D is separated

into L sub-packets of size D1,l, i.e.,
∑L

l=1D1,l = D, and the DF relay and the destination is

assumed to decode these sub-packets via different carriers in parallel2. In other words, the whole

data packet with size D is successfully decoded, if and only if all the L sub-packets via different

carriers are correctly decoded. Then, under the multi-carrier scenario the error probability at the

DF relay is given by

εMc-DF,1 = 1−
L∏
l=1

(1− εDF,1,l) = 1−
L∏
l=1

(
1− P

(
γ1,l,

2D1,l

M
,
M

2

))
. (27)

Similarly, the decoded packet at the relay node is again splitted into L subpackets, which are

then forwarded via the L carriers independently. Thus, the error probability at the destination is

εMc-DF,2 = 1−
L∏
l=1

(1− εDF,2,l) = 1−
L∏
l=1

(
1− P

(
γ2,l,

2D2,l

M
,
M

2

))
, (28)

where D2,l is the size of the sub-packet forward from the DF relay to the destination via the

l-th carrier, i.e.,
∑L

l=1D2,l = D.

According to (9) and the approximation applied in (9), the overall error probability of trans-

mitting a data packet via the two-hop FD DF relaying can be obtained as

2From a practical point of view, most wireless communication standards such as LTE or 5G perform a resource block allocation
in a way such that a time-frequency block is allocated for one frame. Moreover, the channel realization within this block is
assumed to be flat-fading and characterized by a channel quality indicator (CQI) value, and the modulation and coding scheme
(MCS) is then chosen accordingly. If multiple blocks with different CQIs are requested for one link, then multiple radio bearers
are established in parallel and blocks transmitted over them are coded and decoded independently. Hence, although theoretically
the packet can be jointly encoded and decoded among all the carriers (with more likely different channel realizations), we in this
work refer to a more practical assumption of encoding and decoding in parallel. On the other hand, according to [34]–[36], joint
decoding (over multiple carriers) also requires a significantly high complexity. Therefore, the separate encoding for different
carriers desiring a relatively lower complexity is more favorable in the considered latency-constrained scenarios.
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εMc-DF = εMc-DF,1 + εMc-DF,2 − εMc-DF,1εMc-DF,2

≈
L∑
l=1

2∑
i=1

εDF,i,l =
L∑
l=1

[
P
(
γ1,l,

2D1,l

M
,
M

2

)
+P

(
γ2,l,

2D2,l

M
,
M

2

)]
.

(29)

Clearly, εMc-DF is a polynomial of εDF,i,l. The approximation in (29) is introduced by ignoring

all the higher terms of the polynomial and keeps only the first-order terms, which are tight in a

reliable transmission scenario, i.e., εDF,i,l ≤ 10−1 and εDF,i,l � εDF,i,l · εDF,i,l′ , ∀l, l′ ∈ L.

We consider to minimize the overall error probability by applying optimal joint power and

data allocation among multi-carriers in the two hops of FD DF relaying, which is formulated as

min
{pS,l, pR,l, D1,l, D2,l}

L∑
l=1

2∑
i=1

εDF,i,l

s.t.
L∑
l=1

(pS,l + pR,l) ≤ 2pt,

L∑
l=1

D1,l = D,
L∑
l=1

D2,l = D,

pS,l > 0, pR,l > 0, ∀l ∈ L,
Di,l ≥ 0, ∀i ∈ {1, 2}, ∀l ∈ L.

(30)

In particular, the power allocation are among all 2L carriers of the two hops, while the data

allocation is performed per hop, i.e., all the data should be transmitted via each of the hops.

However, the objective of Problem (30) cannot be proved to be jointly convex in pS,l, pR,l,

D1,l and D2,l. Further notice that the allocated power pS,l and pR,l can be uniquely determined

by SNRs γ1,l and γ2,l, i.e., ∀l ∈ L,

pS,l(γ1,l, γ2,l) =
|hRI,l|2σ2

2,l

|h1,l|2|h2,l|2
γ1,lγ2,l +

σ2
1,l

|h1,l|2
γ1,l, (31)

pR,l(γ2,l) =
σ2

2,l

|h2,l|2
γ2,l. (32)

Thus, by substituting variables pS,l and pR,l with γ1,l and γ2,l, the Problem (30) can be equivalently

reformulated to

min
{γ1,l, γ2,l, D1,l, D2,l}

L∑
l=1

2∑
i=1

εDF,i,l

s.t.
L∑
l=1

(pS,l(γ1,l, γ2,l) + pR,l(γ2,l)) ≤ 2pt,

L∑
l=1

D1,l = D,
L∑
l=1

D2,l = D,

γi,l ≥ 1, Di,l ≥ 0, ∀i ∈ {1, 2}, ∀l ∈ L.

(33)

Note that the constraints γi,l ≥ 1 in Problem (33) result from the assumption of reliable
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transmission. In other words, although the constraints of pS,l > 0 and pR,l > 0 in Problem (30)

are not tightly mathematically equivalent to the constraints γi,l ≥ 1 in Problem (33), these two

problems are still equivalent in reliable transmission scenario. Then, for the Problem (33), we

have the following Proposition 3.

Proposition 3. Under the assumptions that the error probability εDF,i,l ≤ εmax, the blocklength

M ≥ Mmin and the SNR γi,l ≥ 1, ∀i ∈ {1, 2}, ∀l ∈ L, the objective of Problem (33) is convex

when the following inequalities regarding εmax and Mmin hold:

0 <
ln(Mmin/2)

Mmin/2
< 0.9− ln 2; (34)

εmax ≤ Q

(√
3

2Mmin

1

9− 10(ln 2 + ln(Mmin/2)
Mmin/2

)

)
. (35)

Proof. We complete the proof by showing the convexity of εDF,i,l with respect to (γi,l, Di,l). The

Hessian matrix of εDF,i,l to (γi,l, Di,l) is expressed as

H=

 ∂2εDF,i,l

∂γ2i,l

∂2εDF,i,l

∂γi,l∂Di,l

∂2εDF,i,l

∂Di,l∂γi,l

∂2εDF,i,l

∂D2
i,l

= 1√
2π

exp

(
−
w2

DF,i,l

2

)
H′, (36)

where H′ is given by

H′ =

 wDF,i,l

(
∂wDF,i,l

∂γi,l

)2

− ∂2wDF,i,l

∂γi,l2
wDF,i,l

(
∂wDF,i,l

∂γi,l

∂wDF,i,l

∂Di,l

)
− ∂2wDF,i,l

∂γi,l∂Di,l

wDF,i,l

(
∂wDF,i,l

∂γi,l

∂wDF,i,l

∂Di,l

)
− ∂2wDF,i,l

∂γi,l∂Di,l
wDF,i,l

(
∂wDF,i,l

∂Di,l

)2

− ∂2wDF,i,l

∂Di,l
2

 , (37)

with wDF,i,l =
C(γi,l)+

log2(M/2)
M/2

−2Di,l/M√
2V (γi,l)/M

.

According to (13), we have ∂2εDF,i,l

∂γ2i,l
≥ 0. In addition, we have the determinant |H′| as

|H′|= ∂2wDF,i,l

∂γi,l∂Di,l

[
2wDF,i,l

(
∂wDF,i,l

∂γi,l

∂wDF,i,l

∂Di,l

)
− ∂2wDF,i,l

∂γi,l∂Di,l

]
−wDF,i,l

(
∂wDF,i,l

∂Di,l

)2
∂2wDF,i,l

∂γi,l2

=

√
2/M

(ln2)2V(γi,l)
3
2 (1+γi,l)

3

[
− 4wDF,i,l√

2MV(γi,l)

∂wDF,i,l

∂γi,l
−

√
2/M

(ln2)2V(γi,l)
3
2 (1+γi,l)

3

]
− 2wDF,i,l

MV(γi,l)

∂2wDF,i,l

∂γi,l2

=
wDF,i,l

√
2/M

(ln 2)5V (γi,l)
7
2 (1+γi,l)

6

[(
(1+γi,l)

2−1
)2 −

√
2/M

wDF,i,l

√
1− 1

(1 + γi,l)2

+(2−3 (1+γi,l)2)

(
ln(1+γi,l)+

ln(M/2)

M/2
− 2D ln 2

M

)]
>

wDF,i,l

√
2/M

(ln 2)5V (γi,l)
7
2 (1 + γi,l)

6
g2(γi,l).

(38)

where the function g2(γi,l) is given by
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g2(γi,l)=
(
(1+γi,l)

2−1
)

2+(2−3 (1 + γi,l)
2)

(
ln(1+γi,l)+

ln(Mmin/2)

Mmin/2

)
−
√

2/Mmin

Q−1(εmax)

√
1− 1

(1+γi,l)2

(39)
The inequality in (38) hods due to the facts that ln(M/2)

M/2
− 2D ln 2

M
≤ ln(M/2)

M/2
≤ ln(Mmin/2)

Mmin/2
when

(34) holds, 2−3(1+γi,l)
2 < 0 when γi,l ≥ 1 and wDF,i,l = Q−1(εDF,i,l) ≥ Q−1(εmax). Moreover,

g2(γi,l) is a pure function of γi,l and a monotonically increasing property can be easily proved

when γi,l ≥ 1, while the proof is provided in Appendix B. Namely, we have g2(γi,l) ≥ g2(1)

when γi,l ≥ 1. Under the condition (35) between εmax and Mmin, we can easily obtain that

g2(1) ≥ 0, so that g2(γi,l) ≥ 0 holds ∀γi,l ≥ 1. As a result, |H| = 1√
2π

exp
(
−w2

DF,i,l

)
|H′| > 0.

Therefore, H is positive definite in (γi,l, Di,l). Accordingly, the objective of Problem (33), which

is the accumulation of error probability εDF,i,l, is also convex in (γi,l, Di,l).

Remark. Based on the proposition above, we can have more intuitive assumptions that εmax =

10−1 and Mmin = 200 satisfying the conditions (34) and (35), so that in our model the convexity

of the objective in Problem (33) holds according to the Proposition 3. In fact, while guaranteeing

the convexity, the constraint on blocklength M can also be relaxed to M ≥ Mmin = 36 (which

is much looser than the interested blocklength region in this paper).

However, Problem (33) is still not convex due to the non-convexity of the first constraint. To

address the non-convexity, we next construct a tight convex approximation of the first constraint

in Problem (33) and subsequently propose an iterative algorithm for the solution.

1) Convex approximation: Note that the Problem (33) can be approximated to a convex

one, only when we find a tight convex approximation of function pS,l(γ1,l, γ2,l), i.e., with given

local point (γ
(r)
1,l , γ

(r)
2,l ) constructing a convex function p

(r)
S,l (γ1,l, γ2,l) so that pS,l(γ1,l, γ2,l) ≤

p
(r)
S,l (γ1,l, γ2,l) for any feasible point (γ1,l, γ2,l) and the equality holds when (γ1,l, γ2,l) = (γ

(r)
1,l , γ

(r)
2,l ).

Based on (31) and the inequality that xy = 1
F
Fxy ≤ F

2
x2 + 1

2F
y2, ∀x, y, F > 0, in which the

equality holds when Fx = y, we have

pS,l(γ1,l, γ2,l)=
|hRI,l|2σ2

2,l

|h1,l|2|h2,l|2
·γ1,l ·γ2,l+

σ2
1,l

|h1,l|2
γ1,l ≤

|hRI,l|2σ2
2,l

|h1,l|2|h2,l|2

F (r)
l γ2

1,l

2
+

γ2
2,l

2F
(r)
l

+
σ2

1,l

|h1,l|2
γ1,l

∆
= p

(r)
S,l (γ1,l, γ2,l), (40)

where F (r)
l is defined as a positive constant

F
(r)
l =

γ
(r)
2,l

γ
(r)
1,l

. (41)

Clearly, the constructed p(r)
S,l (γ1,l, γ2,l) in (40) is a convex function and the equality in (40) holds
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when (γ1,l, γ2,l) = (γ
(r)
1,l , γ

(r)
2,l ). By replacing pS,l(γ1,l, γ2,l) with its approximation p

(r)
S,l (γ1,l, γ2,l),

the Problem (33) can be approximated as

min
{γ1,l, γ2,l, D1,l, D2,l}

L∑
l=1

2∑
i=1

εDF,i,l

s.t.
L∑
l=1

(
p

(r)
S,l (γ1,l, γ2,l) + pR,l(γ2,l)

)
≤ 2pt,

L∑
l=1

D1,l = D,
L∑
l=1

D2,l = D,

γi,l ≥ 1, Di,l ≥ 0, ∀i ∈ {1, 2}, ∀l ∈ L.

(42)

The Problem (42) is clearly a convex problem and it should be mentioned that due to the

approximation (40), the feasible set of Problem (42) is a subset of the feasible set in Problem (33).

2) Iterative solution: With the assistance of constructed convex approximation, we solve the

Problem (33) in an iterative manner. In the initialization step, we set r = 0 and start with a

feasible point (γ(0)
i,l , D

(0)
i,l ) with i ∈ {1, 2} and l ∈ L.

In the r-th iteration, we construct the corresponding convex Problem (42) at the local point

(γ
(r)
i,l , D

(r)
i,l ). Through convex optimization tools, the optimal solution for Problem (42) can be

obtained as (γ
(r?)
i,l , D

(r?)
i,l ), which will be applied as the local point in the next iteration, i.e.,

(γ
(r+1)
i,l , D

(r+1)
i,l ) = (γ

(r?)
i,l , D

(r?)
i,l ). Note that in each iteration, we have

L∑
l=1

2∑
i=1

εDF,i,l(γ
(r+1)
i,l , D

(r+1)
i,l ) =

L∑
l=1

2∑
i=1

εDF,i,l(γ
(r?)
i,l , D

(r?)
i,l ) ≤

L∑
l=1

2∑
i=1

εDF,i,l(γ
(r)
i,l , D

(r)
i,l ). (43)

Therefore, by repeating the iterations, the overall error probability will continuously decrease

and eventually converge to a sub-optimal point. The algorithm flow is shown in Algorithm 1.

Algorithm 1 : Iterative Algorithm for Multi-Carrier FD DF Relaying.

a) Initialize a local point (γ(0)
i,l , D

(0)
i,l ) for Problem (33).

b) Choose a threshold λth ≥ 0 and set r = 0.
c) Construct Problem (42) based on local point (γ(r)

i,l , D
(r)
i,l ).

d) Solve Problem (42) and get optimal point (γ(r?)
i,l , D

(r?)
i,l ).

e) If the reduction of error probability is larger than λth,
(γ

(r+1)
i,l , D

(r+1)
i,l ) = (γ

(r?)
i,l , D

(r?)
i,l ).

r = r + 1, Back to c).
End

f) According to (31) and (32), calculate pS,l and pR,l from obtained γi,l.

Hereby, in concern of practical deployment, we provide a complexity analysis for the proposed

algorithm. In the proposed algorithm, each iteration contains a convex optimization task over
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in total 4L variables. Following the complexity analysis strategy in [37], based on the ellipsoid

method [38], the computational complexity of the proposed algorithm for FD DF relaying in

multi-carrier scenario is given by O(ϕ(4L)4), where ϕ denotes the number of iterations. Clearly,

with more carriers assigned for resource allocation, the complexity will increase in a large degree.

B. Achievable FBL Reliability of FD AF Relaying

For AF relaying, the resulting SNR at the destination of the l-th channel is denoted by

γAF,l =
GlpS,lpR,l|h1,l|2|h2,l|2

Glp2
R,l|hRI,l|2|h2,l|2+GlpR,l|h2,l|2σ2

1,l+σ
2
2,l

, (44)

where Gl =
1

pS,l|h1,l|2+pR,l|hRI,l|2+σ2
1,l

is the gain of the amplifier for the l-th carrier. We assume that

the whole packet with size D is split into L sub-packets of size Dl, l ∈ L, i.e.,
∑L

l=1 Dl = D, and

these sub-packets are transmitted through different carriers. Different from DF relaying scheme,

the data packet with size D is only split once, i.e., at the source node, since there is no decoding

behaviour at the relay so that resplitting the data packet is impossible. Similarly, the destination

decodes L sub-packets independently. Therefore, the data packet is correctly decoded only when

all sub-packets are accurately decoded. Then, the overall error probability under AF relaying

scheme is given by

εMc-AF = 1−
L∏
l=1

(1− εAF,l) = 1−
L∏
l=1

(
1− P

(
γAF,l,

Dl

M − n
,M − n

))
. (45)

By ignoring the higher-order terms, which are neglectable under a reliable transmission, i.e.,

εAF,lεAF,l′ � εAF,l ∀l, l′ ∈ L when εAF,l < 0.1, the error probability in (45) can be tightly

approximated as
εMc-AF ≈

L∑
l=1

εAF,l =
L∑
l=1

P
(
γAF,l,

Dl

M − n
,M − n

)
. (46)

Then, aiming at minimizing the overall error probability, the problem is formulated as

min
{pS,l, pR,l, Dl}

L∑
l=1

εAF,l

s.t.
L∑
l=1

(pS,l + pR,l) ≤ M
M−npt,

L∑
l=1

Dl = D,

pS,l > 0, pR,l > 0, Dl ≥ 0, ∀l ∈ L.

(47)

Note that the first constraint in Problem (47) corresponds to the power constraint
L∑
l=1

((M−n)pS,l + (M−n)pR,l) ≤Mpt. (48)
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Since the convexity of the objective in Problem (47) cannot be proved, we similarly turn to treat

the SNRs γAF,l as the variables to be optimized. According to (44), we have

pS,l =
γAF,l

(
p2

R,l|hRI,l|2|h2,l|2 + pR,l|h2,l|2σ2
1,l + pR,l|hRI,l|2σ2

2,l + σ2
1,lσ

2
2,l

)
(pR,l|h2,l|2−γAF,lσ2

2,l)|h1,l|2
. (49)

Clearly, the power variables pS,l and pR,l cannot be completely substituted with only SNR

variables γAF,l. Therefore, for the problem reformulation, we introduce auxiliary variables al,

l ∈ L, which are defined as
al = pR,l|h2,l|2 − γAF,lσ

2
2,l. (50)

Namely, we have
pR,l(al, γAF,l) =

1

|h2,l|2
(al + γAF,lσ

2
2,l). (51)

According to (49), al > 0 holds so that a non-negative pS,l can be guaranteed.

As a result, the allocated power at source can be denoted as
pS,l(al, γAF,l)

=
γAF,l

al|h1,l|2
[
(pR,l(al, γAF,l))

2|hRI,l|2|h2,l|2+pR,l(al, γAF,l)
(
|h2,l|2σ2

1,l+|hRI,l|2σ2
2,l

)
+σ2

1,lσ
2
2,l

]
=alf1,l(γAF,l) +

1

al
f2,l(γAF,l) + f3,l(γAF,l),

(52)

where the functions fj,l(γAF,l), j ∈ {1, 2, 3} are all polynomials of γAF,l, which are given by

f1,l(γAF,l) =
|hRI,l|2

|h1,l|2|h2,l|2
γAF,l, (53)

f2,l(γAF,l) =
|hRI,l|2σ4

2,l

|h1,l|2|h2,l|2
γ3

AF,l +
σ2

1,lσ
2
2,l

|h1,l|2
γAF,l +

|h2,l|2σ2
1,l + |hRI,l|2σ2

2,l

|h1,l|2|h2,l|2
σ2

2,lγ
2
AF,l, (54)

f3,l(γAF,l) =
2|hRI,l|2σ2

2,l

|h1,l|2|h2,l|2
γ2

AF,l +
|h2,l|2σ2

1,l + |hRI,l|2σ2
2,l

|h1,l|2|h2,l|2
γAF,l. (55)

Then, by focusing on variables al, γAF,l and Dl, the Problem (47) can be reformulated to

min
{al, γAF,l, Dl}

L∑
l=1

εAF,l

s.t.
L∑
l=1

(pS,l(al,γAF,l)+pR,l(al,γAF,l))≤ M
M−npt,

L∑
l=1

Dl = D,

al > 0, γAF,l ≥ 1, Dl ≥ 0, ∀l ∈ L.

(56)

Proposition 4. Assuming a reliable transmission, i.e., error probability εAF,l < 10−1 and the SNR

γAF,l ≥ 1, ∀l ∈ L, the objective of Problem (56) is convex in (γAF,l, Dl) when the blocklength

M − n ≥ 50.
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Proof. By following the same procedure as in the proof of Proposition 3 and replacing M
2

with

M−n, the convexity of the objective in Problem (56) can be easily proved when M−n ≥ 50.

Note that when the blocklength M ≥ 200, M − n ≥ 50 can be easily satisfied since n� M
2

in general AF relaying scheme. If the amplification delay n > M
2

, FD AF relaying is clearly not

preferred in comparison to the DF one.

However, due to the non-convexity of pS,l(al,γAF,l), the Problem (56) is still not convex.

Similarly, we will propose a convex approximation and an iterative algorithm for iteratively

addressing the problem.

1) Convex approximation: Similar to the strategy in DF relaying with multiple carriers, for

an iterative solution, we are supposed to construct a tight convex approximation p
(r)
S,l (al,γAF,l)

for function pS,l(al,γAF,l), so that for any feasible point we have p(r)
S,l (al,γAF,l) ≥ pS,l(al,γAF,l),

where the equality holds at a point (a
(r)
l ,γ

(r)
AF,l). Based on (52) and the inequality that xy =

1
F
Fxy ≤ F

2
x2 + 1

2F
y2, ∀x, y, F > 0, with given local point (a(r)

l , γ
(r)
AF,l), we can obtain that

pS,l(al, γAF,l) = al · f1,l(γAF,l) +
1

al
· f2,l(γAF,l) + f3,l(γAF,l)

≤
F

(r)
1,l a

2
l

2
+

(f1,l(γAF,l))
2

2F
(r)
1,l

+
F

(r)
2,l

2a2
l

+
(f2,l(γAF,l))

2

2F
(r)
2,l

+ f3,l(γAF,l)

∆
= p

(r)
S,l (al, γAF,l),

(57)

where F (r)
1,l and F (r)

2,l are positive constants defined by

F
(r)
1,l =

f1,l(γ
(r)
AF,l)

a
(r)
l

, (58)

F
(r)
2,l = a

(r)
l f2,l(γ

(r)
AF,l). (59)

As the functions f1,l(γAF,l), f2,l(γAF,l) and f3,l(γAF,l), defined in (53), (54) and (55), are all posi-

tive convex increasing functions when γAF,l ≥ 1, the approximated function p(r)
S,l (al, γAF,l) is def-

initely convex. In addition, p(r)
S,l (al, γAF,l) = pS,l(al, γAF,l) holds when (al, γAF,l) = (a

(r)
l , γ

(r)
AF,l).

With the introduction of p(r)
S,l (al, γAF,l), the convex approximation of Problem (56) is given by

min
{al, γAF,l, Dl}

L∑
l=1

εAF,l

s.t.
L∑
l=1

(
p

(r)
S,l (al,γAF,l)+pR,l(al,γAF,l)

)
≤ M

M−npt,

L∑
l=1

Dl = D,

al > 0, γAF,l ≥ 1, Dl ≥ 0, ∀l ∈ L.

(60)
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Note that all feasible points in Problem (60) are also feasible in Problem (56), due to the tight

approximation (57).

2) Iterative algorithm: Then, after the convex approximation, the Problem (56) can be iter-

atively addressed. After initialization, we have the initial local feasible point (a(0)
l , γ

(0)
AF,l, D

(0)
l )

and the initial iteration index r = 0.

In r-th iteration, we construct the convex approximation (60) on local point (a(r)
l , γ

(r)
AF,l, D

(r)
l ).

After optimally solving Problem (60), the optimal is directly applied as the local point for r+1-th

iteration. While updating the local point, the objective, i.e., the overall error probability can be

simply proved to be reduced. Thus, by repeating the iterations, the overall error probability will

iteratively decrease and finally converge to a sub-optimal point. The algorithm flow is displayed

in Algorithm 2. Following the same approach as in FD DF relaying with multiple carriers, we can

obtain the complexity of the proposed algorithm for FD AF relaying in multi-carrier scenario.

Since in each iteration the convex problem has in total 3L variables, the overall complexity can

be represented as O(ϕ(3L)4) with ϕ denoting the iteration number. Similarly, more carriers will

lead to a larger computational complexity.

Algorithm 2 : Iterative Algorithm for Multi-Carrier FD AF Relaying.

a) Initialize a local point (a(0)
l , γ

(0)
AF,l, D

(0)
l ) for Problem (56).

b) Choose a threshold λth ≥ 0 and set r = 0.
c) Construct Problem (60) on local point (a(r)

l , γ
(r)
AF,l, D

(r)
l ).

d) Solve convex Problem (60).
e) If the reduction of error probability is larger than λth,

r = r + 1 and update(a(r)
l , γ

(r)
AF,l, D

(r)
l ).

Back to c).
End

f) Based on obtained γAF,l and al, calculate allocated power pS,l and pR,l according to (51) and
(52).

V. NUMERICAL RESULTS

In this section, via simulations, we validate our proposed resource allocation algorithms in

FD relaying and evaluate the overall system performance. We consider the following default

simulation setups in our numerical evaluations: the maximum average transmit power pt = 2W,

noise power level σ2 = −90dBm, the blocklength M = 200 symbols, carrier number L = 5, the

data packet size D = 1.1ML = 1100 bits and residual loop interference gain |hRI|2 = −108dB.

As for the channel gains, we adopt a general pathloss model from [39], in which the pathloss with
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Fig. 4. The received SINR of FD AF relaying with single
carrier under different power allocation ratio.
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a distance of di is obtained by Li = L(d0)+10α log( di
d0
). The baseline pathloss L(d0) is defined

based on a free-space pathloss model with a reference distance d0 = 100m. In simulations,

different carriers are assigned with different baseline pathloss according to the different carrier

frequencies. We consider a linear topology and assume that the relay is installed between the

source node and the destination node. The distances from relay to the source and from relay to

the destination are denoted by d1 and d2, respectively, while d1 = d2 = 250m, and the direct

distance from the source node to the destination node is then given by d1 + d2 = 500m. We

apply a pathloss exponent α = 3.5. Then the channel gain for each carrier on each link can

be calculated correspondingly. In addition, as a benchmark, we also perform simulations on the

direct transmission for a comparison with relaying schemes. The direct channel gain hdirect is

determined based on the same pathloss model with a transmission distance of 500m. With the

same setups, namely the same data packet size and the same blocklength, the error probability for

the direct transmission is given by εdirect = P
(
γdirect,

D
M
,M
)
, where γdirect =

pt|hdirect|2
σ2
2

denotes

the corresponding SNR.

In the following, we investigate the network performance with single and multiple carriers,

respectively.

A. Single Carrier Scenario

For single-carrier scenario, we consider a different maximum average transmit power pt =

0.4W. At first, we study the effect of power allocation and forward delay n on the SINR γAF,2

in FD AF relaying scheme in Fig. 4. From the figure, we observe that the curve is uni-modal,

namely the SINR is pseudo-concave with respect to the percentage of allocated power to the
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relay node, which confirms the statement in Proposition 2. It is also shown that a shorter forward

delay n results in a lower SINR. In FD AF relaying, the overall energy for the packet (data size

D) transmission is limited by Mpt and allocated to two blocks (corresponding to the two hops)

each with blocklength M − n, i.e., (M − n)(pS + pR) =Mpt. As a result, a smaller n leads to

a lower average power level at source and relay, and consequently a lower received SINR.

Next, we depict in Fig. 5 the different resulting overall error probability with different power

allocation ratios for the relay. The reliability performances of different transmission strategies,

i.e., direct transmission, FD DF relaying and FD AF relaying, are displayed for comparison. As

illustrated in the figure, with an optimized power allocation, both the DF and AF relaying schemes

show higher reliability than the direct transmission, which proves the benefits of introducing a

relay node. Furthermore, the DF relaying scheme is observed to gain a better performance than

AF relaying with different delay n. It should be pointed out that although it has been shown

in Fig. 4 that a smaller n results in a lower SINR in AF relaying, a higher reliability is still

discovered in Fig. 5 when n is smaller. This is due to the fact that the blocklength M − n for

both hops is enlarged when n decreases, which leads to a lower data rate D
M−n . This completely

compensates the drawbacks of SINR reduction and finally increases the reliability. It implies

that in improving the transmission reliability in FD AF relaying, reducing n is preferred than

enhancing the SINR at destination. And the convexity of the error probability in FD DF relaying

with respect to the power allocation ratio at the relay is also confirmed in Fig. 5, which is

proved in the Proposition 1. In addition, in order to depict the performance gain of applying

full-duplex techniques, we also show the error probability of half-duplex DF relaying in Fig. 5.

Since in HD relaying, half of the transmission period for both source and relay is idle, so that

more resource can be saved. To keep a fairness in comparison, we assume the data rate and the

available energy for each transmission block are doubled in HD FD relaying. Clearly, we can

observe from the figure that introducing full-duplex relaying has an obvious performance gain

on reliability. The optimal power allocation ratio differs from that in HD FD relaying, due to

the existence of residual loop interference, which indicates the necessity of resource allocation

in full-duplex relaying network.

Finally, we discuss the effect of residual interference gain in FD on the system performance.

Under varying residual interference gain, the corresponding error probabilities of different trans-

mission strategies are presented in Fig. 6. It is clearly shown in the figure that the error probability
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Fig. 6. The impact of the residual loop interference on the achievable reliability in single-carrier scenario.

of direct transmission is not influenced by the residual interference gain and remains constant.

Moreover, for both DF relaying and AF relaying, a lower residual interference gain, namely

better interference cancellation, always leads to a lower overall error probability. When the

residual interference gain is relatively higher, DF and AF relaying schemes have shown a worse

performance than the direct transmission, which implies deploying an FD relay node in this case

is not worthwhile. Furthermore, in comparison, we find that with varying residual interference

gain, the DF relaying always outperforms AF relaying with different delay n. We also notice

that when the delay n in AF relaying is smaller, the corresponding error probability drops faster

as the residual interference gain decreases. As a result, in the FD AF relaying, a smaller n leads

not only to a lower error probability, but also to a higher performance sensitivity with respect

to interference cancellation.

B. Multi-Carrier Scenario

So far, we have performed simulations on a single-carrier scenario and validated the proposed

algorithms for power allocation. As for the multi-carrier scenario, we have proposed algorithms

for joint power and data allocation in both FD DF and FD AF relaying schemes. Before

the numerical evaluations, we first introduce three state-of-the-art schemes (as benchmarks),

i.e., direct transmission, DF relaying with independently optimized (IO) carriers and AF

relaying with independently optimized (IO) carriers, for an explicit comparison:

• For direct transmission, we assume all the carriers are deployed with direct link and the

data packet to transmit is uniformly allocated to these carriers, i.e., each carrier l is allocated

with data amount of Dl =
D
N

bits. The packet is successfully transmitted only when all data

sub-packets via different carriers are correctly decoded.
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Fig. 7. Overall error probability comparison with FD DF
relaying scheme and multiple carriers.
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• In DF relaying with IO-carriers, an FD DF relaying scheme is applied. The resource

optimization is independently operated within each carrier, instead of among all carriers.

The data packet and the total energy are uniformly divided to N partitions with each assigned

to one carrier, so that each carrier is responsible for transmitting a data sub-packet of D
N

bits with total energy of Mpt
N

. Then, within each carrier, the ratio of power allocated to

relay node is optimized based on our proposed power allocation algorithm for single-carrier

scenarios.

• In AF relaying with IO-carriers, the FD AF relaying is considered. Similarly, the data

packet and total energy is equally allocated to all carriers, and each carrier independently

optimizes the power assigned to the source and the relay node.

• By contrast, the solutions of joint resource allocation among multi-carriers based on our

proposed algorithms are respectively represented by DF relaying with jointly optimized

(JO) carriers and AF relaying with jointly optimized (JO) carriers.

We start with Fig. 7 to evaluate the system enhancement of deploying joint resource allocation

in the FD DF relaying scheme and to display the transmission reliability as a function of the

latency constraint, namely the total blocklength M . As illustrated in Fig. 6, the error probability

for the single-carrier scenario increases as the residual interference gain increases. Therefore, in

Fig. 7, we focus on two relatively larger residual interference gains, i.e., −103dB and −104dB,

in order to highlight the profits of performing joint resource allocation. Clearly, we can observe

from the figure that with a fixed data rate (D = 1.1ML), for all transmission strategies, the overall

error probability will be reduced when the total blocklength M becomes larger. This indicates
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that a loose latency constraint leads to a higher reliability performance. Moreover, it can also

be observed that with IO-carriers, the transmission reliability of DF relaying is relatively lower

and even worse than direct transmission (when residual interference gain is −103dB). However,

for both residual interference gains, the joint data and power allocation among carriers in our

proposed solution has significantly reduced the overall error probability of the network, and the

corresponding performance is much better than the direct transmission and DF relaying with

IO-carriers. This shows the significant advantage and importance of joint resource allocation

over the independent power allocation within each carrier. In addition, from the figure, we also

discover that the reliability enhancement from joint resource allocation becomes more significant

when the residual interference gain is smaller, which means a joint resource allocation is highly

suggested when the interference cancellation techniques get improved. And for both IO-carriers

and JO-carriers, the error probability difference between two residual interference gains increases

with the total blocklength M . Therefore, it will be more beneficial to improve the interference

cancellation techniques when the latency constraint M gets larger.

Next, we study in Fig. 8 the system performance in FD AF relaying with multiple carriers.

Similar to the conclusion for FD DF relaying, with a fixed data rate (D = 1.1ML), a larger

total blocklength M reduces the error probability from all transmission strategies and results in

a higher sensitivity of the jointly optimized solution to the residual interference gain. Moreover,

the AF relaying solutions based on independent carrier power allocation have shown worse

reliability, compared to the direct transmission, while the joint resource allocation has also

shown a significant benefit in improving the error probability in AF relaying scheme. It should

be mentioned that for both FD DF relaying and FD AF relaying evaluated in Fig. 7 and Fig. 8,

we display an exhaustive search result with residual loop interference gain of −104dB for

comparison. The exhaustive search is operated via dividing the feasible set by a grid with a

sufficiently small step size. The optimal solution is then exhaustively searched by evaluating all

the feasible points, which results in a significantly high complexity. In both Fig. 7 and Fig. 8,

the corresponding resulting suboptimal solution from our proposed algorithm for multi-carrier

scenario is very close to the exhaustively searched result, while only slight differences can be

observed, which also illustrates the performance of our iterative algorithms in addressing the

joint optimization problems.

Then, in Fig. 9, we compare the DF relaying scheme with AF relaying and direct transmission
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under different data rates. From the figure, we notice that a larger data rate (D = 1.2ML) results

in a higher error probability for all transmission strategies. Since a larger data rate approaches

closer to the Shannon capacity, the corresponding transmission will be more unreliable in the FBL

regime. Furthermore, in the multi-carrier scenario, for two different data rates, DF relaying always

outperforms AF relaying. And the performance gain of DF relaying compared to AF relaying

becomes significant as the total blocklength increases. Thus, for a larger latency constraint M in

a multi-carrier scenario, DF relaying should be considered to have a priority to be implemented.

To finalize our numerical evaluations, we show in Fig. 10 the reliability of different transmis-

sion strategies as a function of the total data size D. From the figure, it can be recognized that in

most cases, the DF relaying shows the best reliability performance, while the AF relaying excels

DF relaying only when the data packet size D is relatively large. And a larger data size D leads

to a larger data rate and subsequently a higher overall error probability. Moreover, as indicated

in the figure, the performance gains of deploying AF relaying (over direct transmission) and of

DF relaying over AF relaying significantly increase, when the blocklength M becomes larger

(as also shown in Fig. 9) or the data size D gets smaller.

VI. CONCLUSION

In this work, considering FBL regime, we modelled the reliability for a two-hop network

applying FD DF and FD AF relaying schemes. Taking a latency constraint and an energy

consumption limit into account, we focused on minimizing the overall error probability for

both two relaying schemes by optimally designing the power allocation at the source and the

relay node. More specifically, with approximated error probability, the power allocation problem
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with FD DF relaying is proved to be convex, which is validated in the simulation process. For

the error probability minimization in FD AF relaying, we equivalently maximize the ultimately

received SINR, which is proved to be a pseudo-concave and makes the equivalent optimization

problem pseudo-convex.

Besides, we also extend our work into a multi-carrier scenario, in which a joint data and power

allocation is required for the overall error probability minimization. Since the previous power

allocation algorithm for single carrier does not work for a joint optimization among carriers,

we proposed innovative algorithms respectively for FD DF and FD AF relaying schemes with

multiple carriers. In particular, we alternatively treated the SNR, instead of the allocated power,

as the variable to be optimized. First, a joint convexity of error probability over SNR and data

size is proved. Then, the problem for reliability maximization in FD DF relaying with multiple

carriers is reformulated and approximated to a convex problem, based on which an iterative

algorithm is proposed to obtain a suboptimal solution. As for FD AF relaying with multiple

carriers, we introduce a series of auxiliary variables to facilitate the problem reformulation.

Subsequently, a convex approximation and an iterative algorithm is accordingly proposed.

Finally, through simulations, all the algorithms for both FD DF and FD AF relaying schemes

and for both single carrier and multiple carriers are validated and compared with direct trans-

missions. The advantages of introducing both DF and AF relaying node are confirmed. A

general better reliability from FD DF relaying is also observed, compared to FD AF relaying.

Furthermore, the joint resource allocation among multiple carriers has shown to significantly

outperform the independent power allocation within each carrier, and is capable of compen-

sating the system performance when single-carrier optimization cannot satisfy the reliability

requirements. In addition, it also indicated that improving interference cancellation techniques

is especially beneficial when the latency constraint is loose (the blocklength is larger) or when

the joint resource allocation is applied.

Note that although in this paper, we have focused on a simple three-node relaying network, the

strategies for the reliability modeling and the minimization of error probability can be extended

to more complicated scenarios, e.g., multi-hop relaying network and scenario with imperfect

channel information state (CSI). Specifically, our design for the multi-carrier scenario can be

extended into a multi-user network combining with the consideration of carrier allocation among

users, which is also considered as our future work.
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APPENDIX A

PROOF OF INCREASING PROPERTY IN g1(γ1)

The function g1(γ1) is described as

g1(γ1) =
γ1

(
γ1(γ1 + 2)− ln(1 + γ1)− 1

e

)
(ln 2)3V (γ1)

3
2 (1 + γ1)

3
=
γ1(γ1 + 2)− ln(1 + γ1)− 1

e

(γ1 + 2)
√
γ1(γ1 + 2)

. (61)

The first-order derivative of g1(γ1) is given by

g′1(γ1) =
2γ1+2− 1

γ1+1
−(γ2

1+2γ1−ln(1+γ1)− 1
e
) 2γ1+1
γ21+2γ1

(γ1+2)
√
γ1(γ1+2)

>
2γ1+2− 1

γ1+1
−(γ2

1+2γ1)
2γ1+1
γ21+2γ1

(γ1+2)
√
γ1(γ1+2)

=

γ1
γ1+1

(γ1+2)
√
γ1(γ1+2)

.

(62)

Clearly, we have g′1(γ1) > 0 when γ1 ≥ 1. Namely, the function g1(γ1) is monotonically

increasing with respect to γ1, ∀γ1 ≥ 1.

APPENDIX B

PROOF OF INCREASING PROPERTY IN g2(γi,l)

The function g2(γi,l) is denoted by

g2(γi,l)=
(
(1+γi,l)

2−1
)2−

√
2/Mmin

Q−1(εmax)

√
1− 1

(1 + γi,l)2
+(2−3 (1 + γi,l)

2)

(
ln(1+γi,l)+

ln(Mmin/2)

Mmin/2

)
.

(63)
Accordingly, the first-order derivative of function g2(γi,l) can be derived as

g′2(γi,l) =4((1+γi,l)
2−1)(1+γi,l)+

√
2/Mmin

Q−1(εmax)

(1+γi,l)2
√
γi,l(γi,l+2)

−6(1+γi,l)
(
ln(1+γi,l)+

ln(Mmin/2)

Mmin/2

)
+
2−3(1+γi,l)2

1 + γi,l
. (64)

By ignoring some positive terms, we obtain the inequality

g′2(γi,l) >4((1+γi,l)
2−1)(1+γi,l)− 6(1+γi,l)

(
ln(1+γi,l)+

ln(Mmin/2)

Mmin/2

)
−3(1+γi,l)

≥(1+γi,l) (4(1+γi,l)2−6 ln(1+γi,l)−
6

e
−7)︸ ︷︷ ︸

g3(γi,l)

.
(65)

The function g3(γi,l) is clearly an increasing function in γi,l when γi,l ≥ 1, i.e., g3(γi,l) ≥
g3(1) = 2.63 > 0 when γi,l ≥ 1. Therefore, we have g′2(γi,l) > 0 when γi,l ≥ 1, and g2(γi,l) is
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monotonically increasing in γi,l ≥ 1.
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