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Abstract—In federated learning (FL), local workers learn a
global model collaboratively using their local data by communi-
cating trained models to a central server for privacy concerns.
Due to its local nature, FL is typically subject to various
heterogeneities, including system and statistical heterogeneity. To
address these concerns, Federated Proximal (FedProx) has been
considered a promising FL paradigm to provide more stable
learning convergence in the presence of computation stragglers
and statistical heterogeneity. However, in wireless networks with
unreliable communication channels, the errors of packet trans-
missions should be considered, introducing additional heterogene-
ity. For the first time, we rigorously prove the convergence of
FedProx in the presence of transmission packet errors in hetero-
geneous networks. In addition, we propose a joint client selection
and resource allocation strategy that maximizes the number of
effective participating users for convergence acceleration. The
method is combined with a random weight mechanism to reduce
the statistical bias caused by the client selection strategy. An
efficient low-complexity algorithm for solving the optimization
problem is developed. The proposed method achieves faster
convergence and requires fewer communication rounds to attain
accuracy than existing state-of-the-art client selection methods.

Index Terms—Distributed learning, federated learning, wire-
less networks, packet error rate, convergence analysis

I. INTRODUCTION

Data-driven machine learning approaches offer great poten-

tial for solving highly complex problems. The presence of a

large amount of data is the cornerstone of machine learning.

However, the vast amount of data generated by the growing

number and variety of Internet-of-Things (IoT) devices makes

machine learning computations intensive and training time

prohibitively long. Decentralized learning schemes have been

investigated to allocate the training task to several computation

centers [2]. The excessive data quantity is also a cause for

concern in terms of communication bandwidth and privacy. In

this regard, a promising learning framework called federated

learning (FL) is proposed in [3], [4]. In FL, the training

process is carried out locally at each device while the trained
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models are aggregated in the central server. In particular, at

each communication round, the central server sends the global

learning model to a group of selected users. Then, users train

the model locally with their own local data and upload the

trained models to the server. At the central server, received

models are averaged.

Due to its highly distributed nature, one of the major

challenges in FL is to address the heterogeneity [5], [6].

Since users’ preferences may differ, its data could also contain

a statistical bias. In addition, the quantity of data acquired

by each user is most likely unbalanced, which results in

the system heterogeneity since the number of iterations in a

single epoch differs if all users’ local batch sizes are set as

identical [7]. Moreover, each device’s computing capability

and availability vary. Stragglers, i.e., users who are extremely

slow to train or update through wireless links, contribute to

high latency since the server must wait for each user to update

before proceeding to the next round. On the other hand, if the

server moves to the next rounds once a specific time limit is

met without waiting for the stragglers, their data information

may never be used during the training phase. Considering these

different kinds of heterogeneity, the machine learning target

could be skewed with the conventional FL approach.

To tackle this issue, numerous solutions have been proposed.

Momentum-based strategies have been presented in [8]–[10].

By maintaining double momentum buffers, [8] improves the

training performance in a cross-silo FL context with non-

i.i.d. data distributions. A generic algorithmic framework is

proposed in [9] to reduce the client drift and adapt methods

like momentum or ADAM to FL settings. Authors in [10]

developed a momentum-based technique without introducing

additional computation and communication load. Another line

of research has been to use distillation-based methods as

in [11], [12]. Authors in [11] resolve the heterogeneity prob-

lem by addressing the forgetting problem (of the local model

forgetting the global model) approach. Knowledge distillation

method usually requires a proxy dataset, which may not be

realistic in FL settings; the authors in [12] offer a data-

free method to address heterogeneous FL. In this work, we

focus on strategies based on regularization [13]–[15] which,

in general, add a regularization term to the local model

update. Model-contrastive FL is proposed in [13]. By adding

a model-contrastive loss for the similarity between model

representations on the local loss, it provides accurate empirical

results by correcting local model training. Both [14], [15]

propose using a dynamic regularizer to the local model update

based on the global model. Federated Proximal (FedProx) [15],
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inspired by proximity operator [16], uses a regularizer with a

fixed weight to control the distance between local loss and

global loss. FedDyn [14] adds a regularizer such that the

stationary point of local loss is also a stationary point of the

global loss, hence enhancing the performance under non-i.i.d.

setting.

Due to the existence of numerous possible frameworks, we

have selected FedProx [15] in this work as the base method.

This choice is motivated by its more general theoretical

properties and ability to ensure stability in the presence of

heterogeneities. In fact, it generalizes Federated Averaging

(FedAvg) [3] and improves the convergence stability in case of

non-i.i.d. dataset and partial computations for stragglers. In ad-

dition, FedProx offers a theoretical convergence analysis that

accounts for these heterogeneities without requiring the loss

functions to be strongly convex, which is generally essential

in FedAvg’s convergence analysis [17]. In fact, models in deep

learning are non-convex in general. In addition, we note that

the other mentioned solutions are either complementary (for

momentum-based and distillation-based methods) or can be

adapted (for FedDyn) to the solution in this work.

Moreover, applying FL in wireless communication networks

(referred to as federated edge learning in the literature) in-

troduces additional concerns and heterogeneity. For instance,

local devices may lack sufficient energy for transmissions or

training. Furthermore, poor channel conditions or computation

power may result in high training latency. With consideration

of those issues, how to optimally allocate bandwidth to those

users is also a complex problem. As a result, resource alloca-

tion techniques for FL in wireless networks are required [18]

and have been extensively studied under a variety of con-

straints and objectives. Authors in [19] propose a joint learning

and communication resource allocation strategy to minimize

the total energy consumption under a latency constraint. By

incorporating a weighted proximal term to account for the

heterogeneity, the work in [20] presents an efficient method to

minimize the energy consumption or the completion time of

FL training.

One line of research to counter the limited wireless band-

widths is by exploiting the superposition property of multi-

access channels for the FL uplink model update, referred to as

over-the-air (OTA) federated edge learning (Air-FEEL) [21]–

[23]. FL model updates using analog OTA computation have

first been proposed in [21]. Due to the large size of model

parameters to be transmitted, one-bit quantization has been

investigated in this scheme [22]. In addition, authors in [23]

proposed an optimal power control to mitigate the analytical

convergence bias in Air-FEEL. Despite the high communica-

tion efficiency, the AirComp technique introduces errors in

the model updates and, in general requires massive client

participation in local training. This high client participation

can result in elevated network-wide energy consumption for

the FL task.

On the other hand, in order to have exact model updates,

applying FL in traditional wireless multi-access techniques is

also investigated. Due to the limited bandwidth, only a small

subset of total users are selected to engage in each FL commu-

nication round. Due to the high cost of updating the FL model

in terms of wireless resources, the FL training process is urged

to be accelerated. As a result, besides appropriate resource

allocation strategies that take into account realistic limitations,

client selection is another crucial factor in order to accelerate

the training process. As selecting users only based on wireless

resources often leads to biased learning results when data

are non-identically distributed (non-i.i.d.), the user selection

needs to be carefully investigated in each communication

round. For instance, the work in [24] proposes a joint client

selection and bandwidth allocation scheme to ensure long-term

convergence performance and long-term energy constraints.

The authors in [25] propose a probabilistic client selection

method considering the importance of learning from both the

user data via gradient divergence and the client’s channel

state information. Based upon it, in [26], by first deriving

an analytical tight bound on the remaining communication

round, a probabilistic client selection method having a more

theoretical guarantee is proposed. An optimal joint client

selection and resource allocation policy is provided in [27]

under a total latency budget. A recent work [28] investigates

FL in a hierarchical edge learning paradigm with a helper

to support the server and client and suggests a joint helper

selection and resource allocation. A user scheduling policy

based on the measure of the age of update of local model

updates and channel characteristics, as provided in [29], assists

in improving the FL convergence rate. Maximizing clients per

round is another strategy used to speed up FL convergence

as applied in [30]–[33]. Theoretically, it has been shown that

the convergence rate has a linear speedup with regard to the

number of participating users not only in i.i.d. case, but also

with non-i.i.d. data: [34] assuming the loss function is strongly

convex, [35] with non-convex loss function but using two-

sided learning rates. However, in these works including our

earlier work [1], selecting more clients in a resource-limited

setting always results in choosing clients with better channel

conditions since few resources were required to achieve a suc-

cessful transmission. The FL algorithm converges indeed faster

but to a global model biased toward good channel clients,

which is undesirable especially under high data heterogeneity

correlated with the clients’ spatial distribution.

In addition, the aforementioned works overlook the un-

reliability of wireless links. The transmission itself can be

erroneous. The simple retransmission strategy leads to lengthy

training times. However, simply dropping erroneous packets

without further consideration causes convergence bias towards

good channel users’ data distribution and introduces another

degree of heterogeneity. Therefore, it is important to inves-

tigate the effect of dropping erroneous packets on learning

performance. A joint learning and communication scheme

considering packet error is proposed in [36] by formulating a

user selection optimization problem based on the convergence

analysis of FL. However, the proposed user selection scheme

is only feasible for balanced and i.i.d. dataset. The authors

in [37] analyze three FL client selection methods in wireless

networks under different signal-to-noise regimes. It, however,

requires full involvement of all users’ computation throughout

each training round to exploit instantaneous channel state

information for decision. The article [38] proposes an unbiased
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aggregation method based on averaging the model with cor-

rection weights. A client selection strategy is also proposed.

It prioritizes users with weak channels to be selected more for

fairness concerns. However, selecting weak channel users in a

wireless network may be counter-intuitive and inefficient.

As described previously, choosing suitable users for training

to accelerate convergence without introducing convergence

bias while preserving energy efficiency, which prevents full

computation participation, is a challenging issue. In this work,

we present a combined energy-aware client selection and re-

source allocation policy for accelerating training while avoid-

ing statistical bias due to the previous client selection method

by adding a correction term that grows during the training

process, it should be emphasized that the methodology applies

not only to wireless systems that include packet dropping but

can also serve as a general convergence correction framework

to all other convergence acceleration client selection strategies

based on solving an optimization problem that may cause FL

convergence bias. Moreover, existing client selection strate-

gies based on a combinatorial optimization problem [30]–

[33] including our earlier work [1] are NP-hard and are not

scalable with the dimension of the number of clients in an FL

cross-device setting. In this work, we have proposed a very

low complexity solution to the complex combinatorial client

selection problem. Our main contributions are as follows:

• For the first time, we provide a rigorous convergence proof

of the FedProx learning scheme in the presence of wireless

transmission errors and aggregation weight correction for

packet error. The novel convergence lemma ensures the-

oretical convergence when partial computation stragglers,

non-i.i.d. data distribution, and packet error under fading

channels are all included.

• We formulate an optimization problem addressing joint

client selection and resource allocation to improve the con-

vergence rate of the FL algorithm. The client selection takes

into account the effective participating clients that includes

the importance (to training) and average channel conditions,

and certain random weights that change dynamically during

the training process by using specifically designed function.

This ensures rapid and stable early convergence while pre-

venting biased convergence.

• FL cross-device scenario is proposed for large-scale applica-

tions involving hundreds to thousands of participating users

and requiring numerous communication rounds to achieve

convergence. As a result, the client selection method should

be low complexity. We propose an efficient method for solv-

ing the proposed optimization problem based on the partial

Lagrangian relaxation approach. A closed-form expression

of the Lagrange dual function is provided, resulting in low

complexity of the method.

• We validate the efficiency and accuracy of our suggested

strategy for solving the optimization problem through sim-

ulation. We confirm our client selection is both accurate

and fast learning convergent by testing on two datasets with

different non-i.i.d. distributions.

The rest of the paper is organized as follows: Section II

describes the system model and reviews traditional FedProx.

In Section III, we analyze the convergence of the learning

problem and formulate the convergence acceleration client

selection problem. Section IV presents the optimal solution to

the formulated problem and an efficient low-complexity sub-

optimal solution. We present simulations results in Section V

and conclude the paper in Section VI.

II. SYSTEM DESCRIPTION

A. System Model

Consider a wireless network of one base station (BS) and a

set of N devices performing FL tasks. The distance between

the BS and the device k ∈ {1, . . . , N} is denoted by dk.

We assume K ∈ N
∗ resources blocks (RBs) are available for

transmission during the training.

In FL, a learning task is performed cooperatively by the BS

and user equipment (UEs). At each training round, the BS

transmits the global model to K selected UEs via downlink

transmission, which is assumed to be reliable due to BS’s

sufficient communication resources. Then, UEs perform the

training with their own collected data. After certain local

training epochs, selected UEs send their local models via

uplink transmission to BS for aggregation to update the global

model in a time-slot manner under a time budget of T for each

user. The transmission is subject to Rayleigh fading and free

space path loss (FSPL), where the channel gain is denoted

by hk = ok
FSPL(d2

k
)

with ok Rayleigh fading coefficient.

Due to limited power and limited resources of local devices,

the uplink transmissions are not always reliable. Inspired

by [36], we use a cyclic redundancy check (CRC) mechanism

to check the data error in received local FL models at the

BS. The packet is dropped once errors are detected during

decoding. Retransmissions are omitted to maintain latency and

communication efficiency, as the size of the model to learn

may be substantial.

We considered the average packet error rate for user k
over quasi-static Rayleigh fading and adopted the error rate

expression according to [39] as the following:

qk = 1− exp

(

− m

SNRk(Pk)

)

, (1)

with m > 0 a waterfall threshold, SNRk(Pk) = Ehk
[ Pkhk

BUN0
] =

Pkh̄k

BUN0
the average signal-to-noise ratio (SNR); h̄k is the

average channel condition of k UE Ehk
[hk]; BU is the

uplink bandwidth; N0 is the power spectral density of additive

white noise; Pk is the transmit power of user k. This packet

error model is tight in this scenario because of the large

size of the local model to transmit. It is assumed that the

whole packet is transmitted as a single packet1. We denote

a multivariate random variable h = (h1, ..., hN ) with hk
representing channel k’s gain. We assume hk between different

UEs are all independent of each other and we denote q′k the

1The assumption does not impact the validity of this work’s designs because
the packet error rate model is independent of packet size and a system design
without this assumption would indicate that the overall success packet error
rate will be the product of all packet successful transmissions. The system
behavior stays similar and does not impact the overall idea of this work. More
accurate design may be developed in our future work.
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instantaneous packet error rate and qk = Ehk
[q′k] the average

packet error rate.

The computational power can be calculated as in [19], [40].

UE k spends the amount of computation energy:

Ek = κω2
kCkIkJk, (2)

where κ is the effective switched capacitance that depends

on the chip architecture, ωk the computation capacity of

user k, Ck (cycle/sample) the number of CPU cycles required

for computing one sample data at user k, Ik the number of

local iterations (number of local epochs) at user k, and Jk the

local dataset size.

We assume that all users have the same computational

power (ωk, Ck are equal) and have the same amount of training

epochs (Ik are equal). The system’s heterogeneity exists as a

result of each user’s uneven quantity of data collected. Then,

the total amount of energy spent on computation during the

training round t can be expressed as follows:

E
(t)
train =

∑

k

Ek = θ
∑

k∈St

Jk, (3)

with θ = κω2
kCkIk as ωk, Ck, and Ik are equal among clients

due to the previous assumption. The subset St ⊂ {1, ..., N}
corresponds to users selected for training at communication

round t.

B. Traditional FedProx Federated Learning

We denote that each UE k collects and possesses a local

dataset of input data Xk = {xk1, ..., xkJk
} and label of Yk =

{yk1, ..., ykJk
}, where Jk defined as in (2). Then, the local

loss function is defined as Fk(w) = 1
Jk

∑Jk

l=1 ℓ(xkl, ykl;w),
where ℓ(xkl, ykl;w)

is the loss of the prediction on sample pair (xkl, ykl) with

the model w. With the local data size ratio of user k, i.e.,

pk = Jk∑
k Jk

, the objective of the training of FL algorithm is

to minimize the global loss function:

min
w

f(w) =

N∑

k=1

pkFk(w) = Ek[Fk(w)], (4)

FL with FedProx constitutes the following steps:

1) Client selection and model broadcasting In the traditional

FedProx algorithm, the BS selects a subset St of length K at

random according to the selection probabilities pk and sends

the current global model w(t) of communication round t to

local users.

2) Local training In FedAvg, w
(t+1)
k is computed by several

steps of stochastic gradient descent (SGD) directly over Fk.

However, when strong statistical heterogeneity (non-i.i.d.) is

present, i.e. Fk is different from f , the local model may

converge to Fk and diverge from the global model f . FedProx

is more stable and has better convergence with non-i.i.d. data

because the proximal term includes a regularization term that

encourages the local model to remain close to the current

model.

In FedProx, UEs receive the global model, then approxi-

mately compute the proximal value of Fk (e.g., by certain

steps of SGD):

w
(t+1)
k ≈ prox 1

µ
Fk
(w(t)), (5)

where prox 1
µ
Fk
(w(t)) = argminw

[
zk(w;w

(t))
]
,

with zk(w;w
(t)) the regularized local loss function

zk(w;w
(t)) =Fk(w)+

µ
2 ||w−w(t)||2 with µ ≥ 0.

3) Model updates and server aggregation Then, each se-

lected user sends its updated model to the server for aggrega-

tion:

w(t+1) =
1

K

∑

k∈St

w
(t+1)
k , (6)

where w(t+1) will be the global model to be sent to selected

clients at the communication round t + 1. In the above

traditional FedProx, the aggregation method is based on the

assumption of error-free communications, whereas packet er-

rors are ignored.

III. CONVERGENCE ANALYSIS AND PROBLEM

FORMULATION

In this section, we first show a necessary modification to

the aggregation expression to account for the packet error.

Subsequently, a convergence analysis of FedProx with this

aggregation expression is provided. Then, we formulate an

optimization problem aimed at maximizing the effective par-

ticipating users under K wireless resource blocks to accelerate

the convergence and propose a dynamic parameter to mitigate

late convergence bias.

A. Fair Aggregation under Packet Errors

To start with, we in this subsection investigate a fair ag-

gregation considering packet errors. In particular, we consider

a practical assumption that the uplink transmissions are not

arbitrarily reliable. We define Z
(t)
k ∈ {0, 1}, where k ∈

{1, . . . , N}, a binomial distributed random variable of suc-

cessful uplink transmission for user k at the communication

round t, i.e., Z
(t)
k ∼ B(1 − q

′(t)
k ) and Z

(t)
k = 1 indicates a

successful uplink transmission from device k, while Z
(t)
k = 0

when error occurs. We define Z(t) = (Z
(t)
1 , . . . , Z

(t)
N ), h(t) =

(h
(t)
1 , . . . , h

(t)
N ) the instantaneous channel gain at t, and q =

(q1, . . . , qN ) (as it was defined as an expected value indepen-

dent of t). Inspired by [38], we propose a modified aggregation

expression for FedProx considering packet error as:

w(t+1) =
1

K

∑

k∈St

(

Z
(t)
k

1− qk
w

(t+1)
k + (1− Z

(t)
k

1− qk
)w(t)

)

,

(7)

which is equivalent to

w(t+1) = w(t) +
1

K

∑

k∈St

Z
(t)
k

1− qk
(w

(t+1)
k − w(t)). (8)

We can show that the expected value to packet error and

channel fading of the update remains the same expression

as (6):

EZ(t),h(t) [w(t+1)] =
1

K

∑

k∈St

w
(t+1)
k , (9)



5

with EZ(t),h(t) [Zk] = Eh(t) [1− q
′(t)
k (h

(t)
k )] = 1− qk.

The previously mentioned FL scheme applied in unreliable

network will be denoted as unbiased throughout the rest of

the paper according to [17], [38]. Any other client selection

than selecting client k with pk probability will be considered

as biased client selection.

B. FedProx Convergence under Unreliable Uplink Transmis-

sions

Next, we investigate the convergence under non-i.i.d. data.

Assumptions and definitions are similar to those in [15]. We

first define a metric for local dissimilarity.

Definition 1. (B-local dissimilarity) The local func-

tions (Fk)k∈{1,...,N} are B-locally dissimilar at w if

E[‖∇Fk(w)‖2] ≤ ‖∇f(w)‖2B2. We define a possible can-

didate B(w) =
√

E[‖∇Fk(w)‖2]
‖∇f(w)‖2 for ‖∇f(w)‖ 6= 0 where ∇ is

the gradient operator.

The non-i.i.d. data distribution would manifest in the dif-

ference of local loss function Fk and its gradient. We state

the assumption of dissimilarity based on the previous defini-

tion. The following assumption is first proposed in [15] for

FedProx convergence analysis and shown in [15, Corollary

10] to be equivalent to the commonly-used bounded variance

assumption, e.g., in [17].

Assumption 1. (Bounded dissimilarity) For every ǫ > 0,

there exists Bǫ > 0 such that the local dissimilarity

of (Fk)k∈{1,...,N} B(w) verifies that B(w) ≤ Bǫ, ∀w ∈ Sc
ǫ =

{w| ||∇f(w)||2 > ǫ}.

We further define the loss function’s regularity and

convexity-related assumption.

Assumption 2. (Loss functions regularity) The loss func-

tion Fk are assumed non necessarily convex, L-Lipschitz

smooth, i.e. for any x and y, ‖∇Fk(x)−∇Fk(y)‖ ≤ L‖x−y‖,

and in addition, there exists L− > 0, such that ∇2Fk �
−L−I , with µ̄ = µ− L− > 0.

The L-Lipschitz regularity can be verified by all neural

networks according to [41] and the bounded non-convexity

assumption may hold by all loss functions if the weight space

considered is constrained within a compact set throughout

the training, and the lower bound assumption follows by the

continuity of ∇2Fk in a compact set.

For allowing partial computation of stragglers, in the fol-

lowing convergence analysis, we denote γ ∈ [0, 1] the local

inexactness of local solution w∗ defined by ||∇zk(w∗;w0)|| ≤
γ||∇Fk(w0)||. Then, based on the above assumptions and

definitions, we provide the convergence analysis of FedProx

considering packet error rate in the following lemma.

Lemma 1. (Non-convex FedProx convergence considering

packet error rate) Suppose that w(t) is not a stationary

solution. Let Assumption 1 (B(w(t)) ≤ B) and Assumption 2

hold. If µ, K, and γ defined previously in FedProx algorithm

are chosen such that ρ > 0 defined as,

ρ =

(

1

µ
− γB

µ
− B(1 + γ)

√

2C(q)

µ̄
√
K

− L(1 + γ)2B2

2µ̄2

−LB
2(1 + γ)2

µ̄2K

(

2
√

2KC(q) + 2C(q)
))

> 0, (10)

with C(q) the parameter in addition to the traditional FedProx

convergence theorem defined as

C(q) = 1 +
qmax

1− qmax

(

1 +
K

2

)

, (11)

where qmax = maxk qk is the maximum average (over fading)

packet error rate of each user. At communication round t, we

have the following expected decrease in the global objective:

ESt,h(t),Z(t) [f(w(t+1))] ≤ f(w(t))− ρ||∇f(w(t))||2. (12)

where St is the set of K devices randomly selected with

probability pk at communication round t.

The proof of this lemma is shown in the Appendix. The

following remark explains the relation between this lemma

result and the original FedProx convergence result.

Remark 1. Lemma 1 shows that FedProx converges con-

sidering packet errors, i.e. the expected loss with regard to

user selection, packet error, and fading reduces with each

round if ρ > 0. In case of error-free transmission (qmax =
0), i.e., C(q) = 1, the original convergence condition of

FedProx [15] coincides with our lemma. The function C(q)
increases monotonically to infinity in [0, 1]. To prevent the

high instability that may be caused by qmax close to 1,

i.e., C(q) = +∞, a constraint in the user selection is added

to discard all users that have an average error probability

higher than 0.9 to ensure stability of (8).

The convergence rate of the FL algorithm can be inherited

from FedProx [15] and is shown in the following remark.

Remark 2. Convergence rate: According to [15], given ǫ > 0,

assume B ≥ Bǫ and all previous assumptions hold for each

iteration t. Then, after T = O( f(w
(0))−f∗

ρǫ ) communication

rounds,

1

T

T∑

t=1

ESt,Z(t),h(t) [||∇f(w(t))||2] ≤ ǫ. (13)

Then we have,

1

T

T∑

t=1

ESt,Z(t),h(t) [||∇f(w(t))||2] = O

(
f(w(t))− f∗

ρT

)

.

(14)

It should be pointed out that the value of ρ also depends on

the packet error rate.

The following remark analyzes the impact of wireless

communication parameters on the FL convergence rate.

Remark 3. In terms of wireless communication, the parame-

ter ρ is only dependent on
C(q)
K . All other parameters are loss
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function-related or learning-related. The term
C(q)
K can be

written and derived as
C(q)
K = 2+K

2K(1−qmax)
− 1

2 . Therefore, the

term
C(q)
K is decreasing with regard to both K and (1−qmax).

We aim at improving the convergence rate, which directly

depends on ρ. However, it seems intractable due to the

complexity of the expression of ρ. We observe that ρ is

highly dependent on both factors K and 1−qmax according to

Remark 3. As K may be constrained by the available RB for

transmission, we will attempt to maximize the convergence

rate by optimizing a joint quantity under this wireless con-

straint in the following section.

C. Problem Formulation

Increasing the convergence rate has the advantage of re-

ducing the number of communication rounds required to

converge, which results in significant time and energy savings

for computation and communication. As mentioned in the

introduction and Remark 3 where the monotony of conver-

gence rate with regard to K and 1 − qmax is specified, the

number of successfully transmitted participating clients per

round can be maximized in order to increase the convergence

rate at the cost of FL convergence bias. In this work, we

are considering K fixed resource blocks in the network and

we will instead attempt to maximize the number of effective

participating users, as explained in the following.

When packet errors occur, the actual number of users con-

tributing to training is the number of successfully transmitted

users instead of K, called effective participating users written

as:
N∑

k=1

a
(t)
k η

(t)
k (1− qk(P

(t)
k )), (15)

with a
(t)
k ∈ {0, 1} represents the user selection, η

(t)
k > 0 the

importance attached to user k at the communication round t

which will be specified later, and P
(t)
k the power allocation at t.

The term effective stands for both channel quality and local

data importance captured by η
(t)
k , the joint consideration of

both terms exists already in the literature, e.g. [25]. Assuming

that η
(t)
k captures perfectly the importance of each local client’s

data to the global model training, in this case, finding users

with largest η
(t)
k (1−qk(P (t)

k )) results in finding more valuable

clients to the training which are susceptible to be successfully

transmitted. Thus, our objective is to maximize the sum of this

quantity for improving the convergence rate under a given K
resource block.

The weights η
(t)
k > 0 should reflect dynamically the

importance of each user k model during the training process.

If η
(t)
k were chosen constant throughout the training, for

example η
(t)
k = pk, the same users will be chosen in each

round because only the average channel condition is taken

into account for client selection, as the training duration is

typically too long for the channel to remain static. Therefore,

we follow the similar approaches proposed in [25], [28], where

the importance weights η
(t)
k are introduced to take into account

each user’s model importance.

However, even if we assume that η
(t)
k completely captures

each user’s model importance, this user selection is still biased

toward good channel users, regardless of the design of η
(t)
k .

In cases of a strong correlation between channel condition

and data distribution, prioritizing good channel user updates

leads to inaccurate or unstable convergence. Introducing some

random explorations stabilizes the convergence. Therefore, it

is necessary to incorporate random weights representing non-

biased user selection and increase their relative weights during

training.

As a result, we introduce the integer ξt ∈ {0, 1, ..., N} to

represent the progression of the training process. Based on this

value, the method balances the convergence acceleration user

selection with η
(t)
k (1 − qk(P

(t)
k )) and the non-biased random

user selection. It is defined as the number of users which have

been selected and have successfully transmitted their updates

at least one time until the communication round t. We define

the set S̄t of the set of selected users who have successfully

transmitted their updates. We further denote the set of all users

who successfully participated in the training up to the end of

communication round t by Tt =
⋃t

r=0 S̄r. The parameter ξt
can be defined as the cardinality of the set Tt:

ξt = card(Tt). (16)

Next, we introduce the weights deduced from ξt for balanc-

ing the convergence acceleration scheme and unbiased conver-

gence. We define the function value ϕ(ξt) for the convergence

acceleration term to maximize the effective participating users,

and ψ(ξt) for fully random unbiased user selection strategy

only based on {pk}k. Note that the system benefits from

random user selection for avoiding convergence bias, only

once the majority of the user’s data has been incorporated into

our model and the convergence acceleration has occurred. As

a result, the intended function shape is flat for small values

of ξt in order for the convergence-accelerating client selection

to be dominant, and steep for large values of ξt close to N
(the maximum of ξt. Therefore, for satisfying such function

shape, we construct the following functions:

∀ξt = 1, . . . , N, ϕ(ξt) =
1− e−

N−ξt
N

M

1− e−M
, ψ(ξt) = 1− ϕ(ξt),

(17)

where M > 0 is an arbitrary shape factor. The bigger M is,

the slower ϕ will decrease at the beginning and the steeper at

the end, as shown in the illustration of some cases in Fig. 1.

Therefore, the convergence acceleration term dominates at the

start of the training but diminishes when most users’ updates

have been taken into account to ensure accurate convergence.

A similar decaying and increasing function approach has been

proposed in [42]. The relative novelty of this work lies mainly

in the use of ξt, which is more adapted to packet error

scenarios, the two terms that are weighted, and the function

shapes.

For the simplicity of notation, we omit the index t for

the decision variable a and P . As a result, the proposed

optimization to jointly accelerate convergence and avoid bias
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Fig. 1. Illustration of ϕ and ψ = 1− ϕ to ξt with different values of shape
factor M for a total number of users of N = 100.

for each communication round t is formulated as follows:

max
a,P

N∑

k=1

ak

(

η
(t)
k (1− qk(Pk))ϕ(ξt) + Λk,tψ(ξt)

)

, (18a)

s.t. a ∈ {0, 1}N , (18b)

N∑

k=1

ak = K, (18c)

ρ(qmax(a⊙ P )) > 0, (18d)

∀k ∈ {1, . . . , N}, akPk,min ≤ akPk ≤ Pmax, (18e)
∑

k

ak(Pk +
θJk
T

) ≤ Emax

T
, (18f)

where the parameter Λk,t is taken as a random weight as

follows:

Λk,t = randk,t()
1
pk , (19)

where randk,t() is the sample for UE-k at the communication

round t from a uniform random distribution over [0, 1). It

has been shown in [43] that selecting K greatest value

of Λk,t at each communication round is equivalent to random

weighted selection without replacement of K users with

the weights {pk}Nk=1. Note that the client selection method

eventually converges, i.e., when ξt ≈ N , and will not stall at

some small and particular sets of clients, which could damage

the convergence performance under heterogeneity, because

when ξt is small, the design of η
(t)
k favors selecting clients

that have not successfully updated their models. When ξt is

large, the random weights dominated by ψ(ξt) will have the

chance to pick clients that have not updated yet and increase ξt.
The weighted random selection fully takes place after ξt ≈ N
ensuring a non-biased FL convergence.

The constraint (18b) imposes that ak = 1 if user k is

selected for participation and ak = 0 otherwise. The constraint

(18c) limits that only K users are selected in each round for

computation and communication due to limited wireless com-

munication resources. The convergence condition of FedProx

is ensured by (18d). The operator ⊙ denotes element-wise

multiplication for vectors. The constraint indicates that the

selected clients’ power must ensure a low packet error rate in

order for the FL algorithm to converge. Constraint (18e) shows

the power of transmission is limited by the maximum capacity

of the device and that a lower threshold of SNRk for sufficient

reliable transmission is set at:
SNRk(Pk,min)

m =
Pk,minh̄k

mBUN0
= 1

2 .

The lower power constraint also serves to preserve stability

while aggregation (8). The client selection relies only on

average channel information h̄k since uplink transmission

occurs after users receive and train their models and so the

instantaneous channel information can not be used. A total

network-wide energy budget Emax for training (computation

and communication) is imposed in (18f) as the network should

be energy-aware and needs to support other missions at the

meantime.

D. Choice of η
(t)
k

The choice of the parameter η
(t)
k is critical for ensuring

convergence acceleration by capturing the importance of each

client’s data to the training, especially when the data are

non-i.i.d.. For example, if η
(t)
k were chosen uniformly for all

users, the optimal solution to the problem (18) is always to

select the K best average channel users. If η
(t)
k were kept

constant throughout the training process, the same K users

are selected at each round. Then, the parameter ξt describing

the training process remains unchanged according to (16). The

user selection is stalled at this point and the final convergence

is strongly biased toward these clients.

To address this issue, factor η
(t)
k needs to represent the

importance of the local data to the current global model.

Several candidates exist in the literature such as the Age-of-

Updates (AoU) [29] or the local loss values Fk(w
(t)) with w(t)

the current global model as in [44], [45]. We will use local

loss values as ηk throughout the rest of this work. Simulation

results in section V will show that choosing AoU or local loss

gives comparable results.

In fact, simply selecting clients with higher loss can result

in faster convergence [44] and a simple illustration of how

this works can is provided in Fig. 2. As it is a special case

of FL, we adopt a different notation than formerly introduced,

with w̄(i) the model at the communication round i. Random

client selection can lead to updates that deteriorate the training

by deviating from the optimal model w∗ as shown by w̄(2)

and w̄(4) in Fig. 2b, whereas selecting higher loss clients

always yields updates close to the optimal as in Fig. 2a. Local

loss values are thus an excellent candidate for representing the

importance of the local model to the global model.

The losses of the current global model on local datasets

are inaccessible to the BS unless additional communication

rounds and forward propagation computation are added. In

order to save communication/computation rounds for energy

and latency concerns, we utilize the accumulated averaged

loss over local iterations during training Fk(w
(t+1)
k ) as an

approximation to Fk(w
(t+1)), as briefly proposed in [44].

Therefore, we have

η
(t+1)
k =

1

E

E∑

l=1

1

|ξ(l)k |

∑

ξ∈ξ
(l)
k

f(w
(t+1)
k,l ; ξ) (20)

where E the number of epochs, w
(t+1)
k,l is the model of the

training round t + 1 for user k at the l-th epoch, we have

w
(t+1)
k = w

(t+1)
k,E and ξ

(l)
k the mini-batch at epoch l. These

values are recorded during the training and can be sent together
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Fig. 2. An simple example illustrating the advantage of selecting higher loss
clients: w∗ the optimal model; one client selected at each communication
round with w̄(i) the global model at communication round t.

with the model parameter updates. The additional cost is

negligible considering the size of model parameters.

E. Method Summary

The whole algorithm is shown in Algorithm 1. In addition to

applying FedProx in a packet loss scheme, a client selection

considering jointly training and transmission packet error is

proposed. The cost is negligible as it only requires each user

to record the average loss during training and transmit it to the

BS for client selection, together with the updated models and

values, to update the value η
(t)
k . The BS also records how many

times each user has successfully transmitted for updating ξt.
The model aggregation formula is applied to a packet error

scenario with (8).

Algorithm 1: Proposed whole framework

Initialize: K, T , µ, γ, w(0), all wireless factors, S(0),

η(0) = 0

for t = 0, 1, . . . do

BS selects a subset St of length K solving the

problem (18) depending on {η
(t)
k }1≤k≤N , ξt and other

average wireless factors.

The BS sends w(t) to all selected devices.

for selected device k ∈ St in parallel do

Compute w
(t+1)
k that is a γ

(t)
k -inexact minimizer of

argminw zk(w,w(t)) (6) and store the loss value

at each epochs.

Compute the average loss value η
(t+1)
k .

Send w
(t+1)
k and η

(t+1)
k back to the BS.

end

BS records successfully transmitted users to update the

set of successfully updated clients set Tt in order to

calculate the value ξt by (16).

BS aggregates the received w
(t+1)
k according to (8) and

obtains w(t+1).
end

IV. JOINT USER SELECTION AND POWER ALLOCATION

FOR FL UNDER PACKET ERROR

The problem formulated in (18) is a non-linear mix-integer

optimization problem. The solution is typically NP-hard. In

this section first the naif exact approach solution is explained

before presenting the low-complexity sub-optimal solution.

A. Naif Approach

Since the variable a ∈ {0, 1}N is binary, the optimization

problem (18) is a mixed integer problem, which can be solved

by decomposing the original problem via going through all

possible combinations of a while solving those sub-problems

with regard to P .

In particular, for any user selection ã, where ã ∈ {0, 1}N
and

∑N
k=1 ãk = K, we denote the set S̃t = {k|ãk = 1}. We

have the corresponding sub-problem with variable of P :

max
P

∑

k∈S̃t

gk(Pk)

s.t. (18d) − (18f)

(21)

Denoting gk(Pk) = η
(t)
k exp (− β

Pkh̄k
)ϕ(ξt) + Λk,tψ(ξt)

with β = mBUN0 (the index t of gk is omitted for the sake

of clarity of notation). The following lemma shows that the

sub-problem is a convex optimization problem.

Lemma 2. The objective of (21) is concave in the feasible

region, and therefore problem (21) is a convex optimization

problem.

Proof. It can be noticed that the objective is concave only

if for any k = {1, ..., N}, gk is concave. The second order

derivative of gk is:

g′′k (x) = η
(t)
k ϕ(ξt)

β

h̄kx3
e
− β

h̄kx

(
β

h̄kx
− 2

)

. (22)

For gk to be concave, a sufficient and necessary condition

is if h̄kx
β ≥ 1

2 , i.e.
SNRk(Pk)

m ≥ 1
2 which is satisfied in

constraint (18e) by definition of Pk,min. The constraint (18d)

can be easily transformed into a convex constraint form by

exploiting the monotonicity of ρ with regard to Pk. The

constraint is equivalent to having a lower bound of Pk for

all selected client k, therefore a convex constraint and can

thus be merged into the constraints (18e).

According to Lemma 2, the optimal solutions can be

efficiently found by the standard convex optimization algo-

rithm with a complexity of O(K2) [46], [47]. To screen

all possibilities of a, we have
(
N
K

)
possibilities which have

asymptotically O(NK/K!) operations, resulting in the overall

complexity of O(NKK2/K!).

B. An Efficient Approach via Lagrangian Relaxation

Although the proposed naif approach can provide globally

optimal solutions, its complexity is high. Especially, FL sce-

narios typically involve a huge number of users and require

numerous communication rounds. As a result, the efficiency

of user selection and power allocation computation has a

substantial effect on the global convergence time.

Therefore, we propose an efficient approach based on La-

grange relaxation (LR) [48] to solve Problem (18), where some

constraints are included within the objective with the help of
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Lagrange multipliers. In particular, we formulate a Lagrangian

relaxed problem P(λ) by incorporating (18f) into the objective

function with λ ≥ 0 as follows:

max
a,P

N∑

k=1

ak

(

η
(t)
k (1− qk(Pk))ϕ(ξt) + Λk,tψ(ξt)−

λ
(
Pk +

θJk
T

))

+ λ
Emax

T
,

s.t. (18b) − (18e).

We denote the objective function
∑N

k akg
(λ)
k (Pk) with g

(0)
k =

gk as previously defined and we denote, for UE k, g
(λ)∗
k and

P ∗
k respectively the optimal value and optimal point of the

following one-variable optimization problem:

max
Pk

ηk(1− qk(Pk))ϕ(ξt) + Λk,tψ(ξt)− λ
(
Pk +

θJk
T

)
,

s.t. Pk,min ≤ Pk ≤ Pmax.
(23)

The solution of this problem g
(λ)∗
k can be attained, because

the objective is continuous and the feasible region is compact.

As the constraints of (23) affect only one user at a time, the

following lemma indicates that the solution of (23) can easily

be derived from the optimum of (23).

Lemma 3. The optimal solution to the problem P(λ) corre-

sponds to

ak =

{

1 if k ∈ arg K-max g
(λ)∗
k

0 otherwise

and the optimal power is {P ∗
k }Nk=1.

Proof. As the only joint constraint is relaxed into the objective,

we can write the problem as:

max
a

N∑

k=1

ak max
Pk,min≤Pk≤Pmax

g
(λ)
k (Pk)

s.t. a ∈ {0, 1}N ,
N∑

k=1

ak = K.

The problem is reduced to choose the K highest values

of maxPk,min≤Pk≤Pmax g
(λ)
k (Pk).

It remains to solve the convex optimization (23) (objective

concave in the feasible region according to Lemma 2) for each

user k = 1, ..., N . The following lemma describes the optimal

solution to the problem.

Lemma 4. The optimal solution to the problem (23) is:

P ∗
k =







Pk,min if g
(λ)′
k (Pk,min) ≤ 0

Pmax if g
(λ)′
k (Pmax) ≥ 0

− bk

2W(−
√

λbk/ck/2)
otherwise.

(24)

where bk = β/h̄k and ck = ηkϕ(ξt) and the function W
denotes the Lambert W function.

Proof. Let µ1, µ2 ∈ R be the dual variable relating to the

constraint Pk,min − Pk ≤ 0 and Pk − Pmax ≤ 0. The KKT

conditions can be written as:






Pk,min ≤ Pk ≤ Pmax

µ1, µ2 ≥ 0

µ1(Pk − Pk,min) = 0, µ2(Pk − Pmax) = 0

g′k(Pk) = λ− µ1 + µ2.

(25)

We remind from the proof in the Lemma 2 that g′k is non-

increasing in the feasible region [Pk,min, Pmax]. From the KKT

conditions:

• If Pk = Pk,min, then µ2 = 0 and µ1 > 0. We have

g′k(Pk,min) < λ.

• If Pk = Pmax, then µ1 = 0 and µ2 > 0. We

have g′k(Pmax) > λ.

• If Pk ∈ (Pk,min, Pmax), then by complementary slack-

ness, µ1 = µ2 = 0. We have g′k(P
∗
k ) = λ. We remind

that λ is not a variable in this optimization problem.

For any x ∈ (Pk,min, Pmax), g
′
k(x) = ck

bk
x2 e

−
bk
x with bk > 0

and ck > 0 defined previously. The equation can be written

as follows:

b2k
4x2

e−
bk
x =

λbk
4ck

(> 0) ⇐⇒ − bk
2x
e−

bk
2x = −1

2

√

λbk
ck

⇐⇒ W(−1

2

√

λbk
ck

) = − bk
2x
,

(26)

The last equivalence is due to the definition of the Lambert

W function. The closed-form solution of P ∗
k in (24) follows.

The lemma is proved because g
(λ)′
k = g

(0)′
k − λ.

Algorithm 2: Solve (18) by Lagrangian relaxation

Initialize: ε > 0, itermax∈ N
∗, λmin,feasible = +∞, and

λmax,unfeasible = 0.

while iter ≤ itermax and λmin,feasible − λmax,unfeasible > ε do

λ =
λmax,unfeasible+λmin,feasible

2
.

Solve the problem P(λ) via Lemma 3 and 4 and obtain

solutions (a∗
λ,P

∗

λ ).

if (a∗
λ,P

∗

λ ) is feasible, i.e. constraint (18f) satisfied then

λmin,feasible = λ

else

λmax,unfeasible = λ

end

iter ← iter + 1.
end

return (a∗
λ,P

∗
λ ) solution of P(λmin,feasible).

We can obtain a lower bound of the optimal solution of the

initial mixed-integer problem (18) by finding the optimal λ∗

minimizing the optimum of P(λ). Strong duality cannot be

guaranteed as our initial problem is a mixed-integer problem.

In addition, the solution of P(λ∗) does not ensure feasibility

in the primal problem. We propose to obtain a sub-optimal

feasible solution obtained by Algorithm 2. The algorithm is

based on bisection search [49] to find the optimal primal-

feasible dual solution λ∗feas. The approach is illustrated in
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Fig. 3. Explanation of Algorithm 2 for a bisection algorithm to find the best
primal-feasible dual problem solution. P∗(λ) is the optimal value of P(λ)
in (23).

TABLE I
PARAMETER VALUES USED IN SIMULATIONS

Parameter Value Parameter Value

N0 -150 dBm/Hz BU 1 MHz

Pmax 10 mW m 0.023 dB

σ(fading) 1 Emax 30 mJ

Tslot 1.3 s frequency 2.4 GHz

κ 10−28 ωk 2 GHz

Ck 2000 Ik 20

M 3

Fig. 3. In fact, we initialize with the primal-feasible dual vari-

able bounds λmin,feasible as infinity for primal feasible solution

and λmax,unfeasible as zero for ignoring the hard constraint. Note

that λmax,unfeasible < λmin,feasible because the relaxed primal

constraint becomes tighter when λ becomes greater. The

problem P(λ) is solved via Lemma 3 and 4. As a closed-form

solution exists in (24), the highest complexity operation is to

sort N values when finding the K greatest values of g
(λ)
k (P ∗

k,λ)
as in Lemma 3, so has the complexity of O(N log(N)), since

the accuracy of the bisection and other operations are of a

constant term with regard to N and K. The bisection search

depends on the accuracy of the solution to achieve and is of

constant order regarding N and K. Therefore, our solution

has an overall complexity of O(N log(N)) and is well-suited

for large-scale FL networks.

V. SIMULATIONS

A. Settings

We assume there are N user devices uniformly distributed

over a circular network area of radius R = 1000m (by

default) serving by a BS. The K = 10 (by default) uplink

resource blocks are allocated for model update transmissions.

We assume a free space path loss model and Rayleigh fading

channels. Other wireless parameters are given in Table I.

FL is performed on two datasets:

a) MNIST dataset [50]: consists of 60000 28 × 28
grayscale images of handwritten digits between 0 to 9;

b) CIFAR-10 dataset [51]: consists of 60000 32x32

colour images in 10 classes;

The MNIST and CIFAR-10 datasets are split into an unbal-

anced quantity of user’s data following a power law as done

in [15], [17]. Two non-i.i.d. distributions are considered: each

device contains samples of two classes of data; data follow

Dirichlet distribution with α = 0.5, parameter quantifying the

similarity of data between UEs as in [52].

For the MNIST dataset, we train a three-layer neural net-

work with 512 hidden units at each hidden layer. We use

TABLE II
TRAINING MODELS AND PARAMETERS USED FOR EACH DATASET.

N K Data Distribution Model

MNIST 500 10 2 digits and Dirichlet three layer NN

CIFAR-10 500 10 2 digits and Dirichlet vgg11 [53]

3 4 5 7 9 12 15

N

6

8

10

12

14

16

18

20

O
p
ti
m
al

va
lu
e

K = 3

K = 5

K = 7

K = 9

naif

LR

(a) Optimal value attained

3 4 5 7 9 12 15

N

10−2

10−1

100

E
xe
cu
ti
on

T
im

e K = 3

K = 5

K = 7

K = 9

naif

LR

(b) Execution time needed.

Fig. 4. Comparison of exact (naif) method and the proposed method (LR)
against total number of users N . Lines with markers are obtained by the
proposed method, and lines without markers by exact method.

rectified linear unit as activation functions for the hidden

layers. A 20% dropout layer is employed after each hidden

layer to avoid over-fitting. CIFAR-10 dataset is trained on

vgg11 [53]. Details of parameters are specified in Table II.

Local SGD solver is used for solving the local optimization

problem in FedProx. We use batch sizes of 64. We use the

learning rate at 0.1 for MNIST and 0.01 for CIFAR-10 and

µ = 1 after a grid search. The number of local epochs is set

to be E = 20.

First, we compare the complexity improvement of the

algorithm we proposed based on Lagrangian relaxation while

maintaining high optimality. Secondly, we show that the

client selection strategy proposed increases and stabilizes the

convergence speed during training.

B. Lagrangian Relaxation Optimization Results

We evaluate the performance of Algorithm 2 to solve the

optimization problem (18). Only in this subsection, values

of η
(t)
k were simulated as a uniform distribution in [1, 3]. The

obtained optimal value with different values of N and K are

shown in Fig. 4a. We assume that when N < K, only N
RBs are used. The proposed LR solution is compared to the

exact (naif) method presented in IV.A.. We observe that our

algorithm (LR) method achieves almost the same optimality

as the exact method for all combinations of (K,N).
Execution times are shown in Fig. 4b for the same combi-

nations of (K,N) in the previous comparison. Our algorithm

spends on average 100 less time than the exact method

by achieving identical performance. This confirms the low

complexity advantage of our approach.

C. Optimization Learning Performance Gain

The advantage of the aggregation considering packet error

rate as in (8) is already shown in [38]. This aggregation is

employed for all following experiments without further speci-

fication. We compare the improvement of the convergence rate

using our client selection method with four other methods: best

loss: the K largest approximated loss’ users are selected [44];

uniform sampling: K users are randomly scheduled at each
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Fig. 5. Number of communication rounds of FL using weighted random and
our method as client selection method to attain specific test accuracy levels
with different numbers of active users K with three levels of cell sizes. A
total of 1000 communication rounds are evaluated except 600 for the CIFAR-
10 Dirichlet case. Line with marker denotes weighted random; line without
marker is the proposed method.

round with equal probabilities; weighted random sampling: K
users are randomly selected with probabilities pk (data size

ratio of user k) with the aggregation weight correction [38];

best channel: the K best average channel users are selected;

weighted random w/o aggregation correction: weighted ran-

dom sampling but without the aggregation weight correction

as in original FL papers [3], [15]. For all the above methods,

if the user selection method already considers data size, the

aggregation formula is exactly (8) by default. Otherwise, the

data size weights pk are considered in the aggregation.

To confirm the convergence acceleration approach, Fig. 5

and Table III, Table IV show the number of communication

rounds needed to attain certain accuracy levels of test accuracy

with regard to the number of resource blocks K for MNIST

and CIFAR-10 datasets. A maximum of 1000 communication

TABLE III
DIFFERENCE OF NUMBER OF COMMUNICATION ROUNDS OF weighted

random AND OUR METHOD TO ATTAIN SPECIFIC TEST ACCURACY LEVELS

{80%, 90%} WITH DIFFERENT NUMBERS OF ACTIVE USERS K WITH

THREE LEVELS OF CELL SIZES {600m, 800m, 1000m}. A TOTAL

OF 1000 COMMUNICATION ROUNDS ARE EVALUATED. THE POSITIVE

NUMBER MEANS THAT OUR METHOD ACHIEVES THE ACCURACY FASTER.
THE TEST IS DONE ON MNIST DATASET.

K 1 2 5 10 20 30

Cell

radius (m)

non-i.i.d.

type

accuracy

level

R = 600
Dirichlet

80% 7 1 1 1 1 3

90% 19 11 9 0 1 5

2 digits
80% 477 242 30 21 0 24

90% X -10 18 16 8 20

R = 800
Dirichlet

80% 8 8 0 1 4 9

90% 70 15 4 2 15 16

2 digits
80% 436 273 -5 17 42 73

90% 0 108 23 -8 23 87

R = 1000
Dirichlet

80% 29 24 2 7 5 13

90% 65 -12 14 8 8 69

2 digits
80% 546 194 82 -7 63 98

90% X 103 129 49 203 X

TABLE IV
DIFFERENCE OF NUMBER OF COMMUNICATION ROUNDS OF FL USING

weighted random AND OUR METHOD AS CLIENT SELECTION METHOD TO

ATTAIN SPECIFIC TEST ACCURACY LEVELS WITH VARIOUS NUMBERS OF

ACTIVE USERS K WITH THREE LEVELS OF CELL SIZES. A TOTAL OF 1000
COMMUNICATION ROUNDS ARE EVALUATED EXCEPT 600 FOR THE

DIRICHLET CASE. THE TEST IS DONE ON CIFAR-10 DATASET.
K 1 2 5 10 20 30

Cell

radius (m)

non-i.i.d.

type

accuracy

level

R = 600
Dirichlet

35% 45 19 -17 1 -17 -8

45% 28 27 6 11 1 -5

2 digits
25% X X -125 25 -5 11

30% X X -224 105 4 -53

R = 800
Dirichlet

35% 37 23 5 -5 57 147

45% X 16 4 9 70 127

2 digits
25% X X 36 -65 -9 285

30% X X 190 -19 -3 X

R = 1000
Dirichlet

35% X 9 8 15 218 329

45% X -37 23 36 240 312

2 digits
25% X X 37 -53 317 553

30% X X 63 -107 X 17
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(b) Dirichlet distribution α=0.5

Fig. 6. Test accuracy evolution for MNIST dataset.

rounds are evaluated for all cases except 600 for the CIFAR-

10 Dirichlet distribution case. Results are also compared with

regard to different cell radii. The average channel quality is

better when the cell radius size is smaller, as we assume N
users are uniformly distributed in a cell size of R. “X" in

the tables denotes the case where both methods did not reach

the accuracy level. A moving average of window size of 11

for Dirichlet distribution and 41 for two-digits case is applied

for smoothing. The proposed method is compared with classic

user selection method weighted random. For MNIST dataset,

the proposed method requires almost consistently fewer com-

munication rounds to achieve certain levels of accuracy, except

in a few rare cases with minor differences. For some extreme
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cases as K = 1 and accuracy of 80%, the proposed method

provides an advantage of 400-500 communication rounds. We

observe that the number of communication rounds needed is

not monotone to K. This is due to the fact that an overall

energy budget exists. More transmission resources here imply

a higher user participation. Low energy left for transmission

after local training leads to less reliable transmission and then

slower convergence. According to the figure and the table, we

observe that in general, the proposed method’s improvement

is more significant for extreme values of K, i.e., K = 1, 2 or

K = 20, 30. The case K = 30 for R = 1000m is an exception

because both user selections didn’t attain 90% of accuracy

within 1000 communication rounds. We further notice that

bigger cell sizes, so less good average channel conditions

of users, resulting in a greater improvement of the proposed

methods in terms of communication rounds. As for CIFAR-10

dataset, in general the same observations and conclusions hold.

However, we observe there are more cases where the proposed

method is outperformed by the baseline, in general with minor

differences, except for the two-digits cases when R = 600m
with significant performance loss. We conjecture the reason

is that the higher complexity of the dataset and the model

may cause more random behaviors due to the sensibility to

the very low number of local dataset sizes and also may make

the convergence trend different than MNIST. Despite this, it

is worth noting that the improvement of the convergence in

some other cases, e.g., R = 1000m and K = 20, 30 is far

more significant, with at least 200 communication rounds of

gain.

In the following, we show further details of the simulations

and explain why only the results of the proposed method and

weighted random were compared previously. Fig. 6 shows

the training accuracy evolution of MNIST dataset with two

different kinds of non-i.i.d.. All five user selection methods

are compared. We notice first that for both non-i.i.d. cases,

only the proposed method and the weighted random selection

can achieve the highest accuracy level, the difference is more

significant when the degree of non-i.i.d. is more important, i.e.

for 2 digits data distribution for each user. That illustrates the

reason why only these two methods are compared previously.

Furthermore, the proposed method converges faster than any

other method. For instance, for Dirichlet distribution results,

weighted random method is slower than the best channel

method to achieve 80% of accuracy, but still slower than the

proposed method.

In Fig. 7, a smooth curve of the number of failed transmis-

sions at each communication round is shown. The proposed

method starts by taking users with good channel conditions,

resulting in lower failing transmission rates. It explains the

faster convergence rate of the proposed method compared to

others because other methods have, on average, 6 against 4
successful packet transmission during the first 20 communica-

tion rounds. The proposed method then seeks to obtain models

of less good channel users to improve training accuracy.

Comparing the learning performance in Fig. 6, it continues

to improve at the same pace as other methods even though

the average successful transmission is lower, showing the

need to update the appropriate important models. Once the
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Fig. 7. Number of successful transmissions occurred at each communication
round comparing different client selection methods. Curve smoothed with
window size of 21.
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Fig. 8. Comparison of different integration of AoU approaches with the
proposed ηk as approximated local loss and framework.

model stabilizes, i.e. ϕ(ξt) = 0, the proposed method will

coincide with weighted random by its own construction to

ensure convergence stability.

D. Choice and Effect of ηk and M

It is mentioned in III.D. that the choice of the importance

metric η
(t)
k in (20) is only one potential candidate. Choosing

it constant and equal is equivalent to best channel compared

previously and its poor results confirm the importance of

choice for it. We provide some results using AoU [29] as ηk in

Fig. 8. In the spirit of the ablation study, the following cases

are compared:

1) AoU EVRYX: ηk = AoU, everything else stays the same.

2) AoU no channel: We solve (18) considering constant and

equal channel term 1− qk(Pk).
3) AoU pure: directly selecting the largest AoU value users

(then do a greedy power allocation for this user selection

as in [29]).

4) AoU nolater: assuming ϕ = 1 and ψ = 0.

5) Loss: the proposed method with ηk as in (20).

We observe that AoU nochannel and AoU pure performs

significantly less well than the other methods, i.e., showing the

importance of considering channel condition in the proposed

effective participating clients user selection (15) jointly with

the model importance as in (20).

We observe that AoU nolater performs the best in all cases

except CIFAR-10 2 digits. AoU EVRYX and Loss have close
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Fig. 9. M effects. Negative value of M denotes the symmetry function of
original Ψ with regard to identity with paramter M .

performance. We confirm the effect of effective participating

clients in user selection and conclude that AoU may be a

better metric for model importance as the local loss (20). Other

model importance metrics may be considered in this proposed

framework.

It can be observed that the performance is better without

the impact of the random weights Λk,t. It does make sense

in the tested scenarios since there is no correlation between

local data distribution and UE’s channel conditions and the

proposed method can explore a large set of clients that have

relatively good channels. This can be confirmed in Fig. 9. We

consider M negative the function symmetric of ϕ to x 7→ 1−x
of ϕ. We note that limM→+∞ ϕ = 1, corresponding to the case

without the impact of Λk,t. We observed that the difference

in performance is small and in general the more M is large,

the better the performance.

To see the effect of M and Λk,t, we evaluate settings with

a strong correlation between data distribution and channel

condition. We consider two data spatial distributions (DSD)

in the non-i.i.d. case with 2 digits data per UE. For DSD 1,

the clients with the data label {0, 1} and {1, 2} are set close

to the BS with a distance of 100m and all other clients are

at 1000m. The DSD 2 is similar to DSD 1 except users with

labels {8, 9}, {9, 0}, {7, 8} are located at 1300m. The results

have been shown in Fig. 10. For DSD 2, a large value of M
leads to higher convergence speed at the beginning as observed

previously, however, a significant accuracy drop occurs just

afterward with high values of M . For DSD 1, also smaller

values of M is preferable. In the DSD2 case where strong

data and space correlation exists, weighted random performs

well. This confirms the importance of the choice of M : when

the data distribution and the UEs’ spatial distribution is weak,

M is encouraged to be large, and vice versa, especially when

some UEs are under weak channel condition.

VI. CONCLUSION

We developed a low-complexity convergence acceleration

FL framework in heterogeneous and unreliable communi-
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Fig. 10. M effect under strong correlation between local data distribution
and UE’s distance to the BS. Data spatial distribution (DSD) 1: users with
labels {0, 1}, {1, 2} located at 100m and others at 1000m; DSD 2: DSD 1
but with users with labels {8, 9}, {9, 0}, {7, 8} located at 1300m.

cation networks. In fact, FL must take into account net-

work heterogeneity in terms of statistics and systems, limited

communication resources, and the unreliability of wireless

communications in order to be applied in practice. This work

proposed the use of FedProx to handle heterogeneity. We

provided a convergence analysis of FedProx under transmis-

sion packet error conditions and proposed a client selection

strategy combined with resource allocation to accelerate train-

ing convergence by maximizing the effective participating

users as FL communication rounds reduction is a primary

issue. Contrary to most existing optimization problem-based

client selection strategies for convergence acceleration, the

proposed method simultaneously avoids biased convergence.

The approach makes use of a parameter to take into account

the learning process progression in order to dynamically adjust

the weights between various variables in our client selection

strategy, thereby avoiding convergence bias that occurs due

to the strong correlation between data distribution and UEs’

spatial distribution. In order to guarantee the scalability of

the approach and ensure a low wall-clock convergence time,

a highly computation-efficient Lagrangian relaxation-based

method has been proposed to obtain a sub-optimal solution

to the described joint client selection and power allocation

problem. According to the simulation results, the proposed

efficient sub-optimal solution approaches the optimal solution

and has extremely low complexity. The results demonstrate

that the proposed client selection technique accelerates the

early convergence under no data-spatial correlation case, re-

sulting in fewer communication rounds to achieve learning

accuracy levels, while ensuring a stable convergence when the

data-spatial correlation is present. In a more realistic wireless

communication environment, the packet to send may also be

divided into numerous packets, and more complicated retrans-

mission mechanisms may be used. Adapting the proposed

analysis and method with more advanced concerns will be

addressed in our future work. Reproducible codes are available

at https://github.com/paulzhengfr/FedproxPER.

APPENDIX

PROOF OF LEMMA 1

The packet error that occurred during aggregation only

intervenes at the inequality [15, eq. (15)] of FedProx proof
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which was to show that:

ESt
[||w(t+1) − w̄(t+1)||2] ≤ 1

K
Ek[||w(t+1)

k − w̄(t+1)||2]

≤ 2B2

K

(1 + γ)2

µ̄2
||∇f(w(t))||2,

(27)

with w̄(t+1) = Ek[w
(t+1)
k ]. We need to bound the LHS of the

previous inequality by adding the consideration of the packet

error and the channel condition, because the actual packet

error depends on the instantaneous channel condition. The

quantity to bound can be expressed as ESt,h(t),Z(t) [||w(t+1)−
w̄(t+1)||2]. For notation simplicity, we will omit the index t
on h and Z.

We replace the term w(t+1) by its aggregation expression

when packet error is present (8):

ESt,h,Z [‖w(t+1) − w̄(t+1)‖2]

= ESt,h,Z

[∥
∥
∥
1

K

∑

k∈St

(
Zk

1− qk
(w

(t+1)
k − w̄(t+1))

+
(
1− Zk

1− qk

)
(w(t) − w̄(t+1))

)∥
∥
∥

2]

,

where Zk is the random variable of successful packet trans-

mission.

We first give the relation between the expected value over

randomly selected set St and the expected value over all

client k:

ESt

[ ∑

k∈St

Xk

]

= K Ek[Xk]. (28)

Each client k is sampled with the probability pk. The above

equality can be proven by denoting St = {i1, . . . , iK}, then

for any {xk}k as in [17],

ESt

∑

k∈St

xk = ESt

K∑

k=1

xik = K ESt
xi1 = K Ek[xk].

The square norm of the sum of two terms is separated as any

cross scalar product is zero as

ESt

[
∑

k∈St

w
(t+1)
k − w̄(t+1)

]

= K(Ek[w
(t+1)
k ]− w̄(t+1)) = 0,

(29)

by definition of w̄(t+1). We denote ESt,h,Z [||w(t+1) −
w̄(t+1)||2] = A+D with

A = ESt,h,Z

[∥
∥
∥
1

K

∑

k∈St

Zk

1− qk
(w

(t+1)
k − w̄(t+1))

∥
∥
∥

2]

, (30)

D = ESt,h,Z

[∥
∥
∥
1

K

∑

k∈St

(

1− Zk

1− qk

)

(w(t) − w̄(t+1))
∥
∥
∥

2]

.

(31)

We have Ehk,Zk
(Zk)=1−qk. By developing the square term

in A and exploiting the independence of cross terms, we

observe that all cross terms are zero from (29), term A is

derived as:

A =
1

K2
ESt,h,Z

[ ∑

k∈St

Z2
k

(1− qk)2
||w(t+1)

k −w̄(t+1)||2
]

. (32)

We have Zk = Z2
k = {0, 1} and by (28):

A =
1

K
Ek,h,Z

[ Zk

(1− qk)2
||w(t+1)

k − w̄(t+1)||2
]

. (33)

Only Zk is dependent on h and Z,

A =
1

K
Ek

[
Eh,Z [Zk]

(1− qk)2
||w(t+1)

k − w̄(t+1)||2
]

=
1

K
Ek[

1

1− qk
||w(t+1)

k − w̄(t+1)||2]

≤ 1

K(1− qmax)
Ek[||w(t+1)

k − w̄(t+1)||2]

≤ 2B2

K(1− qmax)

(1 + γ)2

µ̄2
||∇f(w(t))||2.

(34)

The last inequality comes from proven results in the proof

of [15]. In the term D, the difference of the weight term is

independent of any random variable, then we have,

D =
1

K2
||w(t) − w̄(t+1)||2 ESt,h,Z

[∣
∣
∣

∑

k∈St

(1− Zk

1− qk
)
∣
∣
∣

2]

.

(35)

By Cauchy-Schwarz inequality, we obtain

D ≤ 1

K2
||w(t) − w̄(t+1)||2K ESt,h,Z

[ ∑

k∈St

∣
∣
∣1− Zk

1− qk

∣
∣
∣

2]

≤ ||w(t) − w̄(t+1)||2 Ek,h,Z

[

(1− Zk

1− qk
)2
]

, as in (28)

≤ ||w(t) − w̄(t+1)||2
(

1− 2Ek[
Eh,Z [Zk]

1− qk
] + Ek[

Eh,Z [Z
2
k ]

(1− qk)2
]
)

≤ ||w(t) − w̄(t+1)||2
(

Ek

[ 1

1− qk

]

− 1
)

≤ ||w(t) − w̄(t+1)||2 qmax

1− qmax

≤ B2(1 + γ)2

µ̄2
||∇f(w(t))||2 qmax

1− qmax
.

(36)

Finally,

ESt,h,Z [||w(t+1)−w̄(t+1)||2] ≤ B2(1 + γ)2

µ̄2
||∇f(w(t))||2 2

K
(

1+
qmax

1−qmax
(1+

K

2
)
)

︸ ︷︷ ︸

C(q)

(37)

holds, and the lemma is proved.
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