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Abstract—In this work, a new hybrid algorithm for disease risk
classification is proposed. The proposed methodology is based on
Dynamic Time Warping (DTW). This methodology can be applied
to time series from various domains such as vital sign time series
available in medical big data. To validate our methodology, we
applied it to risk classification for sepsis, which is one of the most
challenging problems within the area of medical data analysis.
In the first step the algorithm uses different statistical properties
of time series features. Furthermore, using differently labeled
training data sets, we created a DTW Barycenter Averaging
(DBA) on each feature. In the second step, validation data sets
and DTW are used to validate the precision of classification
and the final results are compared. The performance of our
methodology is validated with real medical data and on six
different criteria definitions for the sepsis diseases. Results show
that our algorithm performed, in the best case, with precision
and recall of 96,38% and 90,90%, respectively.

Index Terms—Machine Learning, Time Series , Dynamic Time
Warping, Data Mining, Sepsis

I. INTRODUCTION

Time series data extracted from electronic health records
play an important role for improving medical care. Using
different statistical methods, these retrospective data have
been used to understand the relationship between inputs and
outcomes or to find similar patterns for specific patient groups.
If an accurate diagnosis is provided in the right time, the
appropriate treatment can be provided and the patient has
the best chance for a positive health outcome. Since early
treatment of sepsis increases the chance of positive outcomes,
a rapid diagnosis is crucial.

As extracting and labeling sepsis data is not a trivial task,
clinical risk prediction is very complex and depends on expe-
rience, how one chooses criteria, the time of prediction and
the prediction horizon. In this research, we developed a novel
methodology for disease risk classification using retrospective
data [1], [2]. The algorithm is based on the principles of DBA,
DTW and additional statistical methods. In the training phase,
we merged all the patients’ features data by creating DBA in
a positive and negative sense. In the validation phase, we used
validation data to validate the precision of the classification.
If the sample ”is positive and it is classified as positive, it is
counted as a true positive (TP); if it is classified as negative,
it is considered as a false negative (FN)” [3]. If the sample

”is negative and it is classified as negative it is considered as
true negative (TN); if it is classified as positive, it is counted
as false positive (FP)” [3]. Recall of a classifier ”represents
the positive correctly classified samples to the total number
of positive samples” [3]. Precision ”represents the proportion
of positive samples that were correctly classified to the total
number of positive predicted samples” [3]. At the final step,
all results by precision and recall for different labeled data
are compared. We also show the high impact of the different
formulation of disease criteria (differently labeled data) on
performance.

The paper is organized as follows: In Section I, we describe
related problems and the clinical challenge of sepsis identi-
fication. Furthermore, we review existing research studies on
different approaches of combination of statistical and Machine
Learning (ML) approaches. In Section III, we explain the
algorithm design and methods used in our research, where we
describe the proposed methodology including data acquisition
and pre-processing. Section IV proposes our methodology,
where we describe the algorithm design architecture. Section V
illustrates and compares the numerical results for different
training data according to the different criteria for the sepsis
disease. Finally, a conclusion is given in Section VI.

II. RELATED WORKS

The mortality rates due to some diseases like, for example
heart diseases or sepsis [4], are very high worldwide, so
risk prediction plays a very important role. Their diagnosis
requires a lot of experience, time and knowledge. For example,
authors in research work [5] evaluated the relative validity of
sepsis identification criteria in a large database with intensive
care unit patients. The monitoring and clinical challenge of
sepsis identification is also presented by [6]. The authors
in [7] developed a novel traumatic sepsis score (TSS) whose
validation results allow a reliable prediction of the sepsis
risk. Furthermore they constructed a model using logistic
regression based on a LASSO analysis. The authors in [8] used
a statistical approach where they tried to derive and internally
validate the sepsis risk score to predict future sepsis events.
Using recorded vital signs and results of lab values from blood
tests, C-statistic models and software-aided risk scores for



the prediction of sepsis were developed in [9]. Developing
and validating another risk prediction model using a statistical
approach is proposed by [10], [11]. The concepts of Hidden
Markov models for disease risk classification and prediction
are proposed by the authors in [12], [13]. A deep learning
approach for identifying risk factors in Electronic Medical
Records is suggested by [14].

A Support Vector Machine (SVM) was implemented by the
authors in [15] to find classes of cancer subtypes. The authors
in [16] developed an online incremental learning for the
prediction of health parameters using a regression approach.
To reduce the error they used a feedback method. The useful
technique of finding an optimal alignment between two given
time-dependent sequences under certain conditions is called
DTW. The authors in [17] used DTW to calculate the similarity
of dynamic gait data and to predict the risk of falling for older
people. DTW is also used to train kNN classifiers in dialysis
treatment as well as to predict patient’s risks [18]–[20]. To
achieve fast and more precise results in classification tasks,
the authors in [21], [22] developed a global averaging method
for DTW.

III. METHODOLOGY

A. Data preparation

Our data set is based on the large MIMIC-III clinical
database [1]. The MIMIC III database (MDB3) contains
information of patients admitted to different care units in
hospitals. The MDB3 contains multiple measurements such as
vital signs, patient demographics, laboratory test results, fluid
balance as well as reports, diagnostics and notes. The MIMIC
-III Waveform Database [2] (MDB3W) contains thousands of
physiological waveforms recorded at bedside patient monitors
and corresponding vital signs. As clinical data is collected
separately from the patient’s electronic health records, in our
research, we used parts of a ’matched subset’ consisting of
the data from 370 patients. This subset allows a connection
between the waveform records and the related clinical records.
We used three vital signs: heart rate, mean arterial pressure
and respiratory rate as inputs for our algorithm. As extracting
and labeling of sepsis data is not a trivial task, we used
different identification criteria for the sepsis disease to define
for each patient the presence or absence of illness as described
in [5], where different methods for identifying sepsis are
presented. We used cross-validation as a method to estimate
the performance of our model and its parameters which is also
a good measure of how robust a model with its parameters is.

B. Dynamic Time Warping

DTW is an algorithm based on the Levensthein distance and
was originally used in the speech recognition domain [21].
The DTW algorithm can find the optimal alignment between
two time series even when they did not appear at the same
instance. The applicability of DTW for data analysis is limited,
since DTW does not include averaging techniques. In [21] a
methodology for averaging a set of time series was derived
to avoid iterative pairwise averaging. The authors present a

global averaging methodology (DBA) for a length reduction
of the averaged time series. A very good introduction to DTW
and DBA is presented in [21], [22]. In our research, we used
a combination of DTW, which allows to define a similarity
measure for time series on the one side, and DBA to extend
the methodology with an averaging method on the other side.

IV. ALGORITHM DESIGN

A. Step 1: Data Preparation

The first step of our proposed model (no.1 in Fig. 1)
includes the pre-processing of the time series data given
by ŝi,p ∈ RNi,p×1 for a patient p and a vital sign i and
defines different training data sets according to the ”different
sepsis identification criteria” provided by [5]. Here we labeled
patients as ”−” if the patient was healthy, and ”+” if the
patient was ill. For simplicity, we considered only one data set
in our diagram. As the waveform data has different lengths, the
best approach is to aggregate the data and take one segment
of M observations.

B. Step 2: Statistical transformation

The lengths Ni,p of the patients’ p time series data ŝi,p are
different, so the idea is to aggregate each feature for patients,
and then use the last M observations. As it is shown in (no.2
in Fig. 1), we describe the relationship among variables using
descriptive statistics. We applied standard deviation, mean,
median, trend, kurtosis, range and skew statistic to sets of
ten measurements of each feature from patients. Afterwards,
we applied multiple combinations of statistical approaches.
Based on this step, we obtained the top M = 200 observations
si,p ∈ RM×1. Finally, we transformed each aggregated feature
to keep it in the interval [0, 1] of the training data. As we
have information which subjects were positive or negative
for the disease, we merged all data of the patient by fea-
tures in positive and negative ”feature pools”. We use these
transformed data samples which we obtained by the above
described methodology for the next DBA step.

The matrix E+
i ∈ RM×N+ (positive feature pool i) contains

the vector of best statistical transformations t(i) ∈ RM×1 of
the corresponding vital values i = 1, 2, 3 in the columns. The
same is done for the matrix of the negative patients E−i ∈
RM×N− .

C. Step 3: DBA algorithm

First the data sets are divided in a training data (70%)
and validation data set (30%) using cross validation. That
means we take 70% of the columns (patients) of E+

i . The
same is done for the negative patients E−i . The remaining
columns are used as validation data. For the learning step, we
use the training data from E+

i and E−i to create the DBA
d+
i = fDBA(E+

i ) ∈ RM×1 (where fDBA() denotes the DBA
algorithm). In the same way we create d−i . Here, DTW is
applied between the individual time series and the average time
series in order to find correlations between the coordinates
of the averaged time series and the coordinates of the set of
time series [21]. Then each coordinate of the averaged time



series (d+
i , d−i ) is updated as the Barycenter of the coordinates

assigned to it in the previous step [21]. As a result of using
DBA, we got two time series: one as model example for ”+”-
labeled patients and one as model example for ”−”-labeled
patients. As we use 3 vital signs as features, we got 6 ”feature
example” agents and representatives in total (3 in positive)
- marked as d+

i and 3 in negative direction - denoted as
d−i , i = 1, 2, 3.

D. Step 4: Classification and Validation

We used DTW to calculate the distance between the features
of the patients from the validation data and d+

i and d−i with
i = 1, 2, 3. If the comparison result for a ”+” patient is
closer to d+

i , we marked it as 1 otherwise 0. Similarly, we
calculated the distances between ”−” patients and d+

i and
d−i . Here fDTW(si,p,d

+
i ) ∈ R+ in Fig. 1 (4a) denotes the

DTW algorithm [21]. The final result for each patient p is
represented in the form y∗p = (l, j, k) ∈ {0, 1}3, ∗ ∈ {+,−}
(where l, j, k are the results for vital sign (feature) 1, 2,
3). The patient was classified as positive if (l, j, k) contains
minimum two values of 1 in 3-tuple. Similarly, the patient was
classified as negative, if (l, j, k) contains minimum two values
of 1. Using the conditional probability, for ”+” patients we
calculated the risk of a disease as the ratio between the sum
of all ”+” patients from the validation data that have the same
combination (l, j, k) and the total sum of all patients from the
validation data that have the same combination. After Step 4
we calculated the risks:

r((l, j, k)) =

∑
p∈P+ 1{yp=(l,j,k)}∑

p∈P+ 1{yp=(l,j,k)} +
∑

p∈P− 1{yp=(l,j,k)}

where the sets P+ and P− contain the positive and negative
patients of the validation data respectively and 1{x=y} is the
indicator variable defined by:

1{x=y} =

{
1 if x = y

0 else

An exemplary risk classification for ”+” patient is represented
in Fig. 1(4b).

V. DISCUSSION AND RESULTS

As the identification of the sepsis disease is not a trivial
task, our algorithm is trained on differently labeled data using
different criteria of the disease [5]. For each criteria, using
the proposed model, we created DBA centers in a positive
and negative direction, creating thereby classifiers.The results
showing the ability of the algorithm to recognize patients
with disease are presented in Table I.The best recall result
of 90,90% is obtained for labeled data in the SOFA sense [5],
where 8 patients were not recognized as ill patients but were
actually ill. The worst results were obtained for the Explicit
criteria [5]. We also analysed specificity, recall, as well as
total accuracy to estimate the risk of too many false positives.
The best precision results 96,38% in the SOFA sense [5]
are presented in Table II. The example of risk pattern for
positive patients over the features is presented in Table III.

The graphical representation of the best and the worst total
accuracy results are given in Fig 2. The results and algorithm
code generated during the current study are available from the
first author. We also showed that different formulations of the
disease criteria have a high impact on the performance of the
algorithm.

TABLE I: The results of precision: Range-Std-Range

Attribute [5] Negative [5] Positive [5] TP FP Precision
Angus 82 28 17 46 26,98%
Martin 96 14 10 67 12,98%
CDC 60 51 31 25 55,35%

Explicit 102 8 3 94 7,84%
Sepsis3 33 77 67 9 72,72 %
SOFA 22 88 80 3 96,38 %

TABLE II: The results of recall: Range-Std-Range

Attribute [5] Negative [5] Positive [5] TP FN Recall
Angus 82 28 17 11 60,71%
Martin 96 14 10 4 71,42%
CDC 60 51 31 20 60,78 %

Explicit 102 8 3 5 37,5%
Sepsis3 33 77 67 10 87,01 %
SOFA 22 88 80 8 90,90 %

TABLE III: Example of risk pattern for criterion SOFA [5]

Risk pattern of the positive patients
combination (1,1,0) (1,0,1) (0,1,1) (1,1,1)

risk 85,71% 90% 62,50% 81,75%

VI. CONCLUSION

A novel classification technique based on combined sta-
tistical and DBA approach for disease risk classification is
reported. The proposed methodology exploits the advantages
of DBA and a statistical approach, where the model perfor-
mance is investigated by precision, recall and total accuracy
functions. Results show that our algorithm preformed, in the
best case, with precision and recall of 96.38% and 90.90%,
respectively. The next phase of our research will be focused on
applying the proposed algorithm to other domains and datasets,
for example, in IoT environments.
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