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Abstract—In this work, we consider an Internet of Things
(IoT) system where slotted ALOHA is applied to handle the
random access process of multiple IoT users. We leverage
recent advances in the performance characterization in the finite
blocklength (FBL) regime, and study the goodput and reliability
performance of the network. In particular, we characterize the
tradeoff between the transmission error due to FBL, the collision
error influenced by FBL and user number, and the goodput.
Following the characterization, an optimal system design is
provided aiming at maximizing the goodput via choosing the
optimal blocklength and determining the optimal number of
users sharing the frequency resource of interests.

Index Terms—collision, finite blocklength, Internet of Things,
random access, slotted ALOHA

I. INTRODUCTION

The support of future Internet of Things (IoT) scenarios
calls for critical access control solutions for massive machine-
type communications. For instance, the solutions are expected
to handle wireless access requirements of a very large number
of devices under low-latency constraints, while at the same
time these devices usually require to be accessed, i.e., report-
ing information, less frequently. The traditional random access
protocols [1], [2] find application in such scenarios, and have
been considered as a promising solution. A key advantage of
random access is that it does not require the massive devices
to know the states of other devices, i.e., saving feedback
overhead. The most thoroughly studied approach to random
access is the slotted ALOHA due to the low complexity [3],
[4]. To enhance the throughput, one promising approach is to
shorten the slot length based on the average load [5].

However, all the above studies are conducted under the
assumption of transmissions (when no collision occurs) being
arbitrarily reliable at Shannon’s capacity, which is only true in
the so-called infinite blocklength regime (IBL). In particular,
it is shown that in such IBL regime, reducing the block-
length of each transmission in the ALOHA process makes
the probability of collisions be lower [6]. However, setting
the blocklength to be short (no matter due to low-latency
constraints or aiming to reduce the collisions) introduces a
considerable decoding error probability to transmissions in
the finite blocklength regime (FBL) [7]. In particular, as
proved in [7] under the same condition (including coding
rate and channel), a shorter blocklength leads to a higher
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decoding error probability. Moreover, for given frequency
resources, if too many devices are allowed to share them in
the ALOHA process, the collision probability will increase,
while less devices also lead to a low total goodput or spectrum
efficiency. In other words, while varying the blocklength of
each ALOHA transmission and the number of users sharing
the spectrum resource, there exists a tradeoff between the
decoding error, collision and goodput. Hence, it is more essen-
tial to study the FBL performance while explicitly addressing
the tradeoff in the FBL regime in the design of ALOHA
networks. Nevertheless, recently the authors in [8] maximize
the throughput of ALOHA in both IBL and FBL regimes
via determining the optimal number of retransmissions. In
addition, the energy efficiency of an ALOHA process within a
limited frame length is improved in both IBL and FBL regimes
by adjusting each user’s transmission/access probability [9].
Moreover, the authors in [10] derive the FBL performance of
all-to-all broadcasting slotted ALOHA within a limited frame
length duration, where all the users are both transmitters and
servers. To the best of our knowledge, it is still missing in the
literature the optimal design in the FBL regime by addressing
the tradeoff between the transmission error due to FBL, the
collision error influenced by FBL and user number, and the
goodput.

In this paper, we consider the impact of FBL on the process
of slotted ALOHA and characterize the tradeoff between
the transmission error, the collision and the goodput. An
optimal system design is provided to maximize the goodput via
deciding the optimal blocklength and determining the optimal
number of users. Our contributions are summarized as follows:

• We characterize the impact of the blocklength on the
system performance in terms of goodput and packet
failure ratio (due to transmission error and collision).

• Following the characterization, we formulate a problem
for the scheme design, which maximizes the goodput
by optimizing the blocklength and the number of users
under a packet failure ratio constraint. We optimally
solve this non-convex problem in the following way: We
rigorously prove that the goodput is pseudoconcave in the
blocklength and is concave in the number of users. Then,
the optimal solution is obtained via a proposed algorithm
based on the modified block coordinate descent (BCD)
method.



• Via numerical analysis, we validate the analytical model
and illustrate the tradeoff between decoding error, col-
lisions and goodput, and investigate the influence of
various parameters on the performance of the considered
network. We also show the performance advantage of the
proposed algorithm compared to the benchmark.

The rest of the paper is organized as follows. We describe
our system in Section II. Then, we formulate and characterize
the optimization problem and in Section IV, where the optimal
algorithm addressing the problem is proposed as well. The
simulation results are provided in Section V. Finally, we
conclude our work in Section VI.

II. SYSTEM MODEL

We consider an IoT network, where N user equipment
(UEs) randomly access a server via shared radio frequency
resources. The access process is operated in a slotted ALOHA
manner, i.e., time is divided in successive slots with identical
blocklength m (in symbols) and UEs are assumed to be
synchronised with the server. Denote by TS (in second) the
time length of a single symbol. Therefore, the time duration
(in second) of each time slot is t = mTS .

We assume that the packet arrivals at different UEs are inde-
pendent and identically distributed (i.i.d.), while the average
arrive rate is µ (in packets/second) and each packet has k
information bits. Therefore, the average network load G over
all N users can be written as

G = µNt = µNTSm. (1)

Once a UE has a packet, it will send it over a whole time
slot with a transmission rate r = k

m (in bits/symbol). Since all
UEs are synchronised, all the transmission requests of arrived
packets in one slot (from different UEs) operate in the next
slot. Note that under such ALOHA access mechanism, each
UE has no knowledge of others. Hence, a collision may occur
if more than one UE transmit in the same slot.

Assume that the channel state information (CSI) of a link
is known by the corresponding UE. According to the CSI, the
signal-to-noise ratios (SNRs) of all the potential transmissions
(from different UEs) maintain at the same level γ at the server
side, owning to power control mechanism [11].

III. PACKET ERROR PROBABILITY AND GOODPUT
CHARACTERIZATION IN THE FBL REGIME

A. Transmission Error Probability in FBL Regime

Due to the impact of finite blocklength, the transmission
can be erroneous. In particular, with coding rate k

m , the
transmission error probability in the ALOHA time slot is given
by [7]:

εr = P(γ, k,m) ≈ Q
(√

m
V (γ) (C(γ)−

k
m )loge2

)
, (2)

where C = log2(1 + γ) is the Shannon capacity. In addition, V
is the channel dispersion [7]. Under a complex AWGN chan-
nel, V = 1− (1 + γ)−2.

B. Collision Probability of a Transmitted Packet

As the UE has no knowledge of other UE’s task arrivals,
it is possible that multiple UEs choose the same time slot to
transmit the data. Considering the task arrival of UE follows a
Poisson distribution, the possibility of occupation with x UEs
in the same time slot is given by [12]

Pocc(x) =
Gxe−G

x!
. (3)

Therefore, for a transmitted packet, the probability of colliding
with other packet(s), given by εc, can be obtained based on (3).
Note that εc is a conditioned probability on the event that there
exists at least one transmitted packet. Hence, we have

εc =
1− Pocc(0)− Pocc(1)

1− Pocc(0)
=

1− e−G −Ge−G

1− e−G
, (4)

where 1 − Pocc(0) presents the probability that at least one
packet is transmitted and 1 − Pocc(0) − Pocc(1) indicates the
probability of collision.

C. Error Probability of a Transmitted Packet

Combining both the decoding error probability and the
collision probability of a transmitted packet, the overall error
probability of the packet is given by

εo = 1− (1− εr)(1− εc) = 1− (1− εr)Ge−G

1− e−G
. (5)

D. Goodput

The overall goodput of the system is defined by the amount
of information (in bits per second) which are successfully
received at the server:

τg =
k(1− Pocc(0))(1− εo)

t
= µNe−Gk(1− εr). (6)

E. Packet Failure Ratio

Note that εo is the error probability conditioned on trans-
mitting at least one packet in a slot. To characterize how many
packets are failed to be received over the infinite time slots,
the packet failure ratio can be obtained in the following way

PF =
G− tτg

k

G
. (7)

IV. PROBLEM FORMULATION

We aim at maximizing the goodput by deciding the optimal
blocklength m of each time slot and determining the optimal
number of UEs N sharing the resource of the ALOHA process.
Therefore, the optimization problem is formulated as follows:

maximize
m,N

τg (8a)

subject to PF ≤ PF,max, (8b)
m ∈ N, (8c)
N ∈ N. (8d)

where constraint (8b) ensures that the packet failure ratio is
less than a threshold PF,max � 1 to prevent wasting radio
resources.



Clearly, the problem is an integer non-concave problem with
dual variables, due to the integer constraints (8d) and (8c), as
well as the non-concave expression of objective. To tackle
this difficulty, we solve the problem in the following three
steps: We firstly decompose the original problem into two
subproblems. Next, we characterize the subproblems, and sub-
sequently we reformulate them into solvable relaxed pseudo-
concave/concave problems. Finally, we propose an algorithm
obtaining the optimal solution to the original problem by
solving the subproblems iteratively via the BCD method.

A. Decomposition of Problem (8) and Subproblem Character-
ization

Letting N be fixed, i.e., N = N◦, we have following
subproblem:

maximize
m

τg (9a)

subject to N = N◦ (9b)
(8b) and (8c) (9c)

By relaxing constraint (8c) as m ≥ 0, we have following
lemma to characterize the relaxed problem:

Lemma 1. The relaxation of problem (9) is pseudoconcave in
m ≥ 0.

Proof. We start to prove the objective function τg to be
pseudoconcave. In particular, τg can be reformulated as

τg =
f(m)

g(m)
(10)

where
f(m) = µNk (1− εr) (11)

and
g(m) = eµNTsm . (12)

On the one hand, the concavity of f(m) can be showed by
investigating the second order derivative:

d2f

dm2
= −dεr

dα

d2α

dm2
−
(
dα

dm

)
d2εr
dα2

. (13)

where α =
C− k

m√
V/m

. With εr = Q(α) =
1√
2π

∫∞
α
e−

α2

2 dα we

have
dεr
dα

= − 1√
2π
e−

α2

2 (14)

and
d2εr
dα2

=
α√
2π
e−

α2

2 . (15)

This results in the second derivative of ε as follows:

d2εr
dm2

=
1√
2π
e−

α2

2︸ ︷︷ ︸
≥0

α
(
dα

dm

)2

︸ ︷︷ ︸
≥0

− d
2α

dm2

 (16)

Therefore, the sign of d2ε
dm2 depends on − d2α

dm2 , which can be
written as:

− d
2α

dm2
=

C + k
m

4m2

√
V
m

≥ 0 . (17)

If the transmission rate is lower than Shannon capacity, i.e.,
C − k

m ≥ 0, we have α ≥ 0. Hence, it holds that d2f
dm2 ≤ 0.

If the transmission rate is higher than Shannon capacity, i.e.,
C − k

m ≤ 0, we have εr ≥ 1/2 so that PF ≥ 1/2, which
violates the constraint (8b) and leads to an infeasible solution
of (9). As a result, it holds that d2f

dm2 ≤ 0, i.e., f(m) is concave
w.r.t. m.

On the other hand, g(m) = eµNTSm is an exponential
function w.r.t m and therefore convex and strictly positive.

Based on [13, Lemma 2.1], τg = f(m)
g(m) is pseudoconcave,

since (i) f(m) is non-negative concave and (ii) f(m) is
strictly positive convex.

Next, we move on to discussing PF. Similarly, we also
reformulate PF as

PF = 1− f̃(m)

g(m)
(18)

where f̃(m) = (1 − εr). As showed before, f̃(m)
g(m) is also

a pseudoconcave function. Therefore, PF = 1 − f̃(m)
g(m) is

pseudoconvex w.r.t. m.
In summary, problem (9) is a pseudoconcave problem.

Next, by letting m be fixed, i.e., m = m◦, we have the
second subproblem:

maximize
N

τg (19a)

subject to m = m◦ (19b)
(8b) and (8d) (19c)

By relaxing constraint (8d) as N ≥ 0, we have following key
lemma to address the subproblem:

Lemma 2. The relaxation of problem (19) is concave in N ≥
0.

Proof. We also start with the objective function τg . The
concavity of τg can be showed by second order derivative:

∂2τg

∂N2 = µ (1− εr)mTs (G− 2) e−G . (20)

If G ≤ 2, we have ∂2τg
∂N2 ≤ 0. If G > 2, we have

PF ≥ 2−2e−2(1−0)
2 ≥ 0.86 � PF,max, where N is in-

feasible. Therefore, a feasible solution of N must hold that
G = µNm ≤ 2.

Next, we investigate the convexity of PF w.r.t N . The
second derivative of PF is given by

∂2PF
∂N2

= (µNTSm)2e−G ≥ 0 (21)

Hence, PF is convex in N . Since τg is concave in N and
PF is convex in N , problem (19) is a convex problem w.r.t.



N .

According to Lemma 1 and 2, subproblems (9) and (19) can
be solved efficiently by applying standard convex optimization
methods, respectively.

B. Optimal Solution to Problem (8)

To obtain the solution of the original problem, we propose
a modified BCD [14] algorithm, where we fix each one of the
variables and obtain the optimal solution for another succes-
sively. In particular, by initiating N (0) = N◦ and m(0) = m◦,
we firstly solve problem (9) with N = N (i) to obtain
m(i+1) = argmax

m
τg(m,N

(i)), then solve problem (19) with

m = m(i+1) to obtain N (i+1) = argmax
N

τg(m
(i+1), N)

in each iteration. Those steps are repeated until the solution
converges, where an optimum tuple (m(I), N (I)) is obtained
after I iterations. According to [14], the algorithm converges
to the global optimum with a sub-linear convergence rate.

Note that the tuple (m(I), N (I)) is based on the relaxation
of the problem. To obtain the integer solution, we have to
compare all possible integer neighbors of (m(I), N (I)) and
choose the solutions that maximize the goodput while fulfilling
the constraint (8b) as the optimal solution (m∗, N∗). The
algorithm is outlined in Algorithm 1.

Algorithm 1 Search Algorithm for Joint Optimum
Solve relaxed problem:
Initialize N (0) = N◦,m(0) = m◦, i = 1
while solution does not converge do

Solve max
m

τg(m,N
(i−1)) according to Lemma 1, ob-

tain m(i)

Solve max
N

τg(m
(i), N) according to Lemma 2, obtain

N (i)

Start next iteration i = i+ 1
end while
Non-integer solution is (m(I), N (I)) = (m(i), N (i))

Solve original problem:
Find corner points of (m(I), N (I)):
Find (m∗, N∗)1 = arg max

m;N∈{bN(I)c,dN(I)e}
τg(m,N)

Find (m∗, N∗)2 = arg max
m∈{bm(I)c,dm(I)e},N

τg(m,N)

Choose tuple with maximal goodput:
(m∗, N∗) = arg max

(m,N)∈{(m∗,N∗)1,(m∗,N∗)2}
τg(m,N)

The optimal solutions are (m∗, N∗)

V. NUMERICAL SIMULATIONS

In this section, we validate our analytical model via Monte
Carlo simulations and show the advantage of our proposed
algorithm in comparison to benchmarks. In the simulations we
consider the following parameter setups: We have N = 600
users with an arrival rate of µ = 1000 packets per second.
Each packet contains k = 256 bits, encrypted in symbols with
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Fig. 1. Influence of the user number on goodput τg and packet failure ratio
PF . The system setup is the following: various numbers of users with an
arrival rate of µ = 1000 packets per second, SNR γ = 1, k = 256 bits per
packet, Ts = 2.4× 10−9 per second.

symbol duration Ts = 2.4× 10−9 s. The SNR level at server
side is set as γ = 1.

First, we investigate how the blocklength influences the
goodput τg and error probability PF . The results are provided
in Fig. 1, where different setups of user number N are con-
sidered. In addition, both the numerical results based on our
analytical model (lines) and Monte Carlo simulation results
(markers) are provided. First of all, the simulation results
match with our analytical model. Second, the results in Fig. 1-
up confirm our Lemma 1 that the goodput τg is pseudoconcave
in m. In particular, we can observe that the optimal choices
of m are located in a relatively short bocklength regime.
This further confirms the necessity of considering the FBL
impact in the system design. On the other hand, when a longer
blocklength m is chosen, the system performance decreases
rapidly, especially when N is large. Hence, the results suggest
that an accurate optimal value of m is more important for large
slotted ALOHA-supported IoT networks. Third, the results
provided in the bottom subplot of Fig. 1 validate our discussion
after (18) that the error probability of a transmitted packet
is pseudoconcave in m. In addition, the optimal choices of
m minimizing the error probability PF matches with that for
maximizing τg . More interestingly, if we aim at minimizing
PF, a shorter N is always preferred, i.e., no matter if m is
short or long.

Recall that in our design, we optimally choose the block-
length m and the number of users N . Hence, we investigate the
joint impact of m and N on the goodput τg in Fig. 2. Overall,
τg shows joint psuedoconcavity w.r.t. N and m, which ensures
that the optimal value can be obtained via the proposed BCD
method. Moreover, due to the error probability constraints,
the problem is not always feasible if N is too high, or m
is too short. The envelope, which separates the regime into



Fig. 2. Joint influence of user number N and blocklength m on goodput
τg and packet failure ratio PF The system setup is the following: various
numbers of users with an arrival rate of µ = 1000 packets per second, SNR
γ = 1, k = 256 bits per packet, Ts = 2.4× 10−9 s, PF,max = 0.001.

the feasible set (solid surface) and the infeasible set (faded
surface), satisfies PF = PF,max. It confirms our Lemma 1
and 2 that the feasible set, which is limited by PF,max, is a
convex set.

Finally, in Fig. 3 we show the relationship between the
optimal goodput, i.e., obtained via the proposed algorithm,
versus the received SNR level at the sever side. Different
cases with variant packet size k are considered. In addition,
the results are plotted as lines/curves, while the goodput based
on the optimal solution of the relaxed problem is represented
by markers as a performance reference. Moreover, the FBL
goodput based on the optimal solution obtained in the IBL
regime is also provided as the benchmark, this would help
to show the performance loss of ignoring the FBL impact.
In particular, it has been shown that in the IBL regime
the maximum goodput is reached when the average load
G = 1 [12], since the transmission is error-free as long as the
transmission rate is lower than Shannon’s Capacity. Therefore,
we set Nbenchmark = N∗ and mbenchmark = 1/µTSN

∗ to obtain
this benchmark goodput.

First, we observe that all goodput curves are increasing
in SNR. The speed of the increase is high in the low SNR
region. But it becomes slow in the high SNR regime, especially
when the packet size is small. In such case, the bottleneck
of the system becomes the collision, as the SNR only influ-
ences the transmission error probability εr. Therefore, purely
increasing SNR does not always make sense for goodput
promotion. Second, as shown in the figure, the performance
with the optimal integer solutions matches well with the
optimal performance of the corresponding relaxed problem.
In the zoom-in subplot, we show that the performance gap is
tiny. Third, the proposed algorithm significantly outperforms
the benchmark (IBL) when the same setups are considered. In
addition, the optimal solution based on the IBL assumption is
not always feasible w.r.t. the error probability constraint. These
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Fig. 3. Optimal goodput τ∗g versus SNR with proposed algorithm and
benchmark. The marker implies the optimal goodput with relaxed constraints
while the lines represent the optimal goodput with integer constraints. The
system setup is the following: various numbers of packet size k with an arrival
rate of µ = 1000 packets per second, Ts = 2.4× 10−9 s, PF,max = 0.001.

observations confirm again the necessity of considering the
FBL impact in the design of the considered ALOHA system.

VI. CONCLUSION

In this work, we consider slotted ALOHA-supported IoT
system operating with short blocklengths. We leverage recent
advances in the performance characterization in the FBL
regime, and study the goodput and reliability performance
of the network. In particular, we characterize the tradeoff
between the transmission error, the collision error, and the
goodput. Moreover, we rigorously prove that the goodput
is pseudoconcave in the blocklength and is concave in the
number of users. Following the characterization, an optimal
system design is provided aiming at maximizing the goodput
via deciding the optimal blocklength and determining the
optimal number of users, while the optimal solution is obtained
via a proposed algorithm based on the modified BCD method.
Via numerical analysis, we validate the analytical model and
investigate the system performance. In particular, the results
show that a relatively short blocklength is preferred both in
maximizing the goodput or minimizing the error probability.
In addition, a significant performance loss is observed if the
FBL impact is ignored. Both of them confirm the necessity of
our design in the FBL regime.
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