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On the Convex Properties of Wireless Power
Transfer with Nonlinear Energy Harvesting

Yulin Hu, Xiaopeng Yuan, Tianyu Yang, Bruno Clerckx and Anke Schmeink

Abstract

The convex property of a nonlinear wireless power transfer (WPT) is characterized in this work. Following a
nonlinear energy harvesting model, we express the relationship between the harvested direct current (DC) power
and the power of the received radio-frequency signal via an implicit function, based on which the convex property
is further proved. In particular, for a predefined rectifier’s input signal distribution, we show that the harvested DC
power of the nonlinear model is convex in the reciprocal of the rectifier’s input signal power. Finally, we provide
an example to show the advantages of applying the convex property in WPT network designs.

I. INTRODUCTION

Wireless power transfer (WPT) via radio-frequency (RF) radiation has attracted significant attention in
recent years. In particular, RF radiation has indeed become a viable source for energy harvesting (EH)
with clear applications in wireless sensor networks in Smart City and Internet of Things scenarios [1].
In the EH process, the received RF signal is required to be converted into a direct current (DC) signal.
Generally, this EH model (i.e., RF-to-DC conversion) has been considered as either a linear or a nonlinear
process in the literature. Under the assumption of a linear power EH model, various works have been
made to propose optimal designs for WPT networks, e.g., optimal scheduling [2], resource allocation [3],
MIMO broadcasting [4], wireless energy (coverage) provisioning [5] simultaneous wireless information
and power transfer [6], and unmanned aerial vehicle (UAV)-enabled WPT [7], [8]. Unfortunately, in
practice the RF-to-DC conversion is generally nonlinear, which makes all the results conducted following
the linear EH model inaccurate [9]–[12]. In particular, the harvested DC power depends on the properties
of the input signal (power and shape), while the classical linear model ignores much of such dependency.

A general nonlinearity of the EH model has been proposed in [13] via implicit equations, where the
nonlinearity of the rectifier is characterized by the fourth and higher order terms, which makes this model
more accurate and therefore widely-accepted. Following this nonlinear model, a set of studies [14]–[16]
have provided suboptimal resource/power allocation designs for the WPT network. On the other hand,
in comparison to the linear model, this nonlinearity makes the WPT network design problems more
complex and challenging, as the objective function or the constraint functions in these problems involve
implicit functions (representing the nonlinear the RF-to-DC conversion), due to which the convex features
of the problems are unlikely to be shown. Nevertheless, recently in [13] it is shown that from a signal
design perspective, maximizing the output DC current is equivalent to the modified problem of treating
the rectifier parameters (see ki in Equation (5) of [13]) constant. This highlights the dependency of the
harvested DC power on the input signal and is then leveraged in [17] to show the convexity of the diode
current with respect to the input signal. This convexity is the reason why input distributions such as
non-zero mean [18], real Gaussian [19] and on-off keying [20] are favoured for simultaneous wireless
information and power transfer (SWIPT).
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In this paper, we build upon these observations and further analyze the convexity properties of the
energy harvester in WPT, while taking the consideration of the variableness of the rectifier parameters. In
particular, we prove that under a predesigned waveform (i.e., the distribution of the input signal is given),
the harvested DC power via the nonlinear WPT model proposed in [13] is convex in the reciprocal of the
input signal power. This is then shown using a simple example to facilitate the design (e.g., positioning,
scheduling and so on) of WPT networks.

The remaining of the paper is organized as follows. In Section II, we first review the nonlinear WPT
model introduced in [13], following which we express an implicit equation representing the nonlinear
relationship between the harvested DC power and the power of the RF signal. Subsequently, we further
characterize the convexity property of the nonlinear model in Section III. In Section IV, we provide an
example applying the introduced convex property in WPT network designs. Finally, Section IV provides
our conclusions.

II. NONLINEAR CHARGING MODEL

To expresses the non-linearity of the diode, by applying a Taylor expansion of the diode current id the
authors in [13] show that the following relationship between id and the received/input signal yin holds
(see Eq.(6) in [13] for details)

id =
∑∞

i=0
Ki(Iout)R

i
2
antyin

i, (1)

where Ki(Iout), i = 0, ...,∞ are the rectifier characteristic functions with respect to the rectifiers’ output
current Iout. Specifically, Ki(Iout) is defined as follows: For i=0, K0(Iout) = Is

(
e
− IoutR

nvt − 1
)
, and for

i = 1, ...,∞, it is given by Ki(Iout) = Is
e
− IoutRnvt

i!(nvt)
i , where n is the ideality factor, and vt is the thermal

voltage.
In particular, this nonlinear model in [13] truncates the Taylor expansion to the no-th order but retains

the fundamental non-linear behavior of the diode. After the truncation, the rectifiers’ output current Iout

is given by
Iout ≈

∑no

i=0
Ki(Iout)R

i
2
antE{yin

i}, (2)

where Rant is the antenna impedance. According to Equation (19) in [13], the following relationship holds

e
RLIout
nvt (Iout + Is) ≈ Is +

no∑
i even,i≥2

k̄iR
i
2
antE{yin

i}, (3)

where Is is the reverse bias saturation current and no (even) is the truncation order. In addition, k̄i = Is
i!(nvt)i

for i ≥ 2 and with i even, are the rectifiter characteristic constants, i.e., not influenced by Iout.
Denote by RL the load resistance, then the harvested DC power Pdc can be obtained by

Pdc = I2
outRL. (4)

We consider a network under a predesigned waveform, i.e., the distribution of the input signal yin is
given and hence the i-th moment of yin can be known1. Then, the harvested DC power Pdc and the power
Qrf of the received RF signal can be presented by a nonlinear implicit function Fnl, i.e., Pdc = Fnl(Qrf).
In particular, the power of the received (input) signal can be obtained by Qrf = E{y2

in}. In addition, with
the distribution of yin, we can draw that E{yin

i} (i is even) is proportional to Qi/2
rf , given by

E{yin
i} = λiQ

i/2
rf , i even, (5)

where λi is the waveform factor with a unit power, given by λi = E{yini}
(E{yin2})

i
2

.

1On Table III of [21], input signals with different distributions/modulations are discussed.
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Combining (5) to (3), we conduct the following relationship between Iout and Qrf

e
RLIout
nvt (Iout + Is) ≈

∑n′o

j=0
αjQ

j
rf , (6)

where n′o = no/2, α0 = Is > 0 and αj = k̄2jR
j
antλ2j > 0, j ≥ 1. Clearly, the charged current Iout

is an implicit function of Qrf . Based on (4), we further conclude that the harvested DC power Pdc is
also an implicit function of Qrf , which can be expressed as Pdc = Fnl(Qrf). So far, we have reviewed
the nonlinear WPT model introduced in [13] and discussed the relationship between the harvested DC
power Pdc and Qrf the power of the received RF signal. In the next section, we further characterize the
convex property of the above WPT model.

III. CONVEX PROPERTY OF THE NONLINEAR WPT
The harvested DC power in the EH process Pdc = Fnl(Qrf) is an implicit function of the power of

the received RF signal Qrf , while Qrf can be seen as the interface between the EH process and the
RF signal transmission process. However, the relationship between Pdc and Qrf so far has been only
characterized implicitly by a nonlinear implicit function Fnl, which introduces significant difficulties to
maximize the harvested DC power by applying optimal designs in the RF signal transmission process. To
address this issue, we show the convex property of the nonlinear WPT model in the following.

First, we introduce a variable u such that Qrf is modeled as a function of u, where u could be a
variable/factror considered in the RF signal transmission process2. In addition, to facilitate our proof we
define by ρ(u) the right side of (6), i.e.,

ρ(u)
∆
=
∑n′o

j=0
αj (Qrf(u))j . (7)

Recall that αj > 0 for j = 0, .., n′o and the received RF signal power has a positive value Qrf(u) > 0.
Hence, we have ρ(u) > 0. According to (6), it also holds that

e
RLIout
nvt (Iout + Is) = ρ(u), (8)

where Iout is an implicit function of ρ(u). Hence, Iout is also a function of u. We define this function by
Iout = Iout (ρ(u)).

We have the following key proposition addressing the convexity of function Iout.

Theorem 1. Iout (ρ(u)) and Pdc are convex in u, if the following inequality holds
..
ρ(u)−

.
ρ(u)

2 1

ρ(u)
≥ 0, (9)

where
.
ρ(u) and

..
ρ(u) are the first order and second order derivatives of ρ(u) to u.

Proof. The first order derivative of Iout (ρ(u)) to u is given by

.

Iout (ρ(u)) =

.
ρ(u)

RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

. (10)

Based on (10), the second order derivative can be obtained, which is provided in (11) on the top of next
page.

2For instance, under a predesigned waveform (yin has a given distribution), if we let u denote the square of the distance between transmitter
and receiver, the received RF power Qrf (in a free space channel) can be modeled as Qrf =

Q0
u

, where Q0 is the received power at unit
distance. Except that, several factors, e.g., the transmit power at the transmitter and the gain of the channel selected for WPT, significantly
influence Qrf . Depending on the system design problem, one can model u as one of the above factors or a function/combination of some
of the factors.
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..

Iout (ρ(u)) =

.
ρ(u)− RL

nvt

.

Iout(ρ(u))2

(
RL

nvt
ρ(u) + 2e

RLIout(ρ(u))
nvt

)
RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

=
1

RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

..
ρ(u)− RL

.
ρ (u)2

nvt
·

RL

nvt
ρ(u) + 2e

RLIout(ρ(u))
nvt(

RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

)2

 .

(11)

Note that it holds (
RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

)2

=

(
RL

nvt
ρ(u)

)2
+ 2

RL

nvt
ρ(u)e

RLIout(ρ(u))
nvt + e

2RLIout(ρ(u))
nvt

>

(
RL

nvt
ρ(u)

)2
+ 2

RL

nvt
ρ(u)e

RLIout(ρ(u))
nvt

= ρ(u)
RL

nvt

(
RL

nvt
ρ(u) + 2e

RLIout(ρ(u))
nvt

)
.

(12)

As ρ(u) > 0, according to (12) we have

RL

nvt

(
RL

nvt
ρ(u) + 2e

RLIout(ρ(u))
nvt

)
(
RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

)2 <
1

ρ(u)
. (13)

Combining (11) with (13), we have

..

Iout (ρ(u)) >

..
ρ(u)−

.
ρ(u)

2 1
ρ(u)

RL

nvt
ρ(u) + e

RLIout(ρ(u))
nvt

. (14)

Hence, if
..
ρ(u)−

.
ρ(u)

2 1
ρ(u)
≥ 0 holds, Iout (ρ(u)) is convex with respect to variable u. Noting that the

output current is definitely non-negative, i.e., Iout ≥ 0 holds. According to (4), Pdc is also convex in u if
..
ρ(u)−

.
ρ(u)

2 1
ρ(u)
≥ 0 holds.

Furthermore, based on the convexity proved in Theorem 1 we can derive out a more visualized sufficient
condition.

Theorem 2. The inequality (9) holds if
..

Qrf(u)Qrf(u)−
( .

Qrf(u)
)2

≥ 0, (15)

holds, where
.

Qrf(u) and
..

Qrf(u) are the first order and second order derivatives of Qrf(u) to u.

Proof. From the definition (7) of ρ(u), it can be easily derived that ρ(u) > 0. Thus, the inequality (9) is
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equivalent to
..
ρ(u)ρ(u) ≥

.
ρ(u)

2
. Let

.

Qrf =
.

Qrf(u) and
..

Qrf =
..

Qrf(u). Then, we can derive that

.
ρ(u) =

dρ

dQrf

.

Qrf

=
∑n′o

j=1
αjjQ

j−1
rf

.

Qrf ,

..
ρ(u) =

d2ρ

dQ2
rf

.

Q
2

rf +
dρ

dQrf

..

Qrf

=
∑n′o

j=2
αjj(j−1)Qj−2

rf

.

Q
2

rf +
∑n′o

j=1
αjjQ

j−1
rf

..

Qrf

= α1

..

Qrf +
∑n′o

j=2
αjjQ

j−2
rf

(
(j−1)

.

Q
2

rf +Qrf

..

Qrf

)
≥ α1

..

Qrf +
∑n′o

j=2
αjj

2Qj−2
rf

.

Q
2

rf

≥ 0 .

Based on the expressions of
.
ρ(u) and

..
ρ(u), we have

..
ρ(u)(ρ(u)− α0)

≥
(
α1

..

Qrf +
∑n′o

j=2
αjj

2Qj−2
rf

.

Q
2

rf

)(∑n′o

j=1
αjQ

j
rf

)
(16)

≥
(
α1

√
Qrf

..

Qrf +
∑n′o

j=2
αjjQ

j−1
rf |

.

Qrf |
)2

(17)

≥
(
α1|

.

Qrf |+
∑n′o

j=2
αjjQ

j−1
rf |

.

Qrf |
)2

(18)

=

(∑n′o

j=1
αjjQ

j−1
rf

.

Qrf

)2

=
.
ρ(u)

2
,

where the inequality between (16) and (17) holds according to the Cauchy-Buniakowsky-Schwarz In-
equality, and the inequality between (17) and (18) is due to the condition in (15). Therefore, we can
get

..
ρ(u)−

.
ρ(u)

2 1

ρ(u)
≥ α0

..
ρ(u)

ρ(u)
≥ 0. (19)

Condition (15) is a sufficient condition of (9). Thus, (15) can also result in the convexity of Iout (ρ(u))
and Pdc in u.

Next, we consider a special type of function Qrf(u), given by Qrf(u) = a
u

, where a is a constant. With
such function type, it can be easily proved that

..

Qrf(u)Qrf(u)−
.

Qrf(u)
2

> 0 for u > 0. According to
Theorem 1 and Theorem 2, Pdc is convex with respect to u > 0. Combining this example (a = 1) with
Theorem 1 and Theorem 2, we have

Theorem 3. Under a predesigned waveform (given distribution of the input signal yin), Iout (Qrf) and
Pdc are convex in 1

Qrf
for Qrf > 0.

Proof. Let u = 1
Qrf

, i.e. Qrf = 1
u

. Hence, u > 0 holds. It can be easily proved that Qrf = 1
u

satisfies the
condition in (15). Iout (Qrf) and Pdc are convex in u, i.e. convex in 1

Qrf
.
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Fig. 1. Numerical results confirm Theorem 3.

We validate our analytical model in Fig. 1, where different type of yin are considered as per reference
[21]. Clearly, the results match well with Theorem 3. According to Theorem 3, the harvested DC power
is convex in 1

Qrf
. Note that Qrf is the received RF power and 1

Qrf
is linear in the path-loss of the wireless

link transmitting the RF signal, i.e., Qrf = z/d, d is the path-loss and z is a weight (e.g., due to channel
fading) constant to d. Hence, we conclude that the harvested DC power is convex in the path-loss of the
RF transmission link. This property likely facilitates the optimal position design for the source, especially
when the source provides energy supply for multiple users at different locations. Moreover, the theorem
indicates the convexity between the harvested DC power and the reciprocal of the transmit power of the
RF signal, which provides guidelines for power allocation designs.

IV. AN APPLICATION: WPT TRANSMITTER POSITIONING

In this section, we provide a case study to present the advantage of the proved convex property in
solving optimization problems in practical WPT system designs. Specifically, we consider a WPT system
with a WPT transmitter at position (x, y) and a set of N randomly located WPT receivers with positions
{(xn, yn)}, n ∈ N = {1, ..., N}. The received RF power of the n-th receiver is Qrf,n = Q0/dn, where Q0

is the received RF power at a unit distance and dn = (x − xn)2 + (y − yn)2 is the pathloss of the n-th
receiver. Taking both the charging performance and fairness into account, we consider to maximize the
minimal harvested DC power among all receivers by optimizing the transmitter’s position (x, y). Formally,
the resulting optimization problem is

max
x,y,P̃dc

P̃dc (20a)

s.t. P̃dc − Pdc,n (Qrf,n) ≤ 0, ∀n ∈ N , (20b)
xmin ≤ x ≤ xmax, (20c)
ymin ≤ y ≤ ymax, (20d)

where Pdc,n (Qrf,n) is the harvested DC power of the n-th receiver and P̃dc is the lower bound of the
harvested DC power among all receivers. Moreover, xmin, ymin and xmax, ymax are the minimal and maximal
values of the positions (xn, yn),∀n ∈ N , respectively.

Note that the problem in (20) is non-convex due to the concave term −Pdc,n in (20b). On the other hand,
according to Theorem 3 Pdc,n is convex in 1

Qrf,n
, i.e., also convex in the path-loss dn. Hence, the successive

inner approximation (SIA) method [22] can be applied to iteratively solve the convex-approximate problem.
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Fig. 2. Convergence behavior of proposed algorithm with 5 receivers and 10 receivers.

Specifically, in the i-th iteration, let d[i]
n = (x[i] − xn)2 + (y[i] − yn)2 and α

[i−1]
n = −P ′dc,n(d

[i−1]
n ) > 0, the

first-order Taylor approximation of term −Pdc,n over the point of d[i−1]
n is obtained as

−Pdc,n(d[i]
n ) ≤ α[i−1]

n d[i]
n − α[i−1]

n d[i−1]
n − Pdc,n(d[i−1]

n ) (21)

, P̂
[i]
dc,n(V [i],V [i−1]), (22)

where V [i] = (x[i], y[i]). Note that α[i−1]
n > 0 and d[i]

n is jointly convex over (x[i], y[i]), thus P̂ [i]
dc,n is jointly

convex over (x[i], y[i]). Then, the problem in (20) is solved iteratively until the stable point is achieved.
In the i-th iteration the approximated problem is written as

max
V [i],P̃

[i]
dc

P̃
[i]
dc (23a)

s.t. P̃
[i]
dc + P̂

[i]
dc,n(V [i],V [i−1]) ≤ 0, ∀n ∈ N , (23b)

(20c), (20d).

In the simulation, the WPT receivers are randomly located in a square area with the width of 5m. The
transmit power of the WPT transmitter is set to 30dBm. The received RF power at a unit distance is set to
10dBm, i.e., Q0 = 10dBm. In order to evaluate the performance of our iterative algorithm, we compare the
results with the optimum obtained by a grid based exhaustive search. The exhaustive search is conducted
as follows. First, we define the searching area as A := {(x, y)|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}. Then,
we discretize the area A into meshes with the resolution of ξ and get a grid based searching area defined
as Ã = {(xi, yi)|i ∈ I}, where (xi, yi) is the i-th grid point and I is the index set of all grid points.
Finally, we calculate the minimal harvested DC power among all receivers for each grid point, which
results in a set of solutions {Pdc,i|∀i ∈ I}. The result of the exhaustive search is obtained by taking the
maximum value among these solutions, i.e., P ?

dc = max
i
{Pdc,i}. In our simulation, the grid resolution is

chosen as ξ = 0.001. The corresponding relative difference between the results at the optimal point of
exhaustive search and its adjacent points is with the magnitude of 10−7, which shows a high accuracy of
the chosen resolution.

In Fig. 2 the convergence behavior of the proposed iterative algorithm with 5 and 10 receivers is
depicted. For each scenario the iterative algorithm is tested with two initial points. Specifically, one initial
point is chosen as the point that is very close to a WPT receiver, denoted as the “ini-bad” in the figure,
and another initial point is chosen as the point that is close to the geometry center point of all WPT
receivers, denoted as the “ini-good” in the figure. It is observed that the results of both initializations
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of the proposed iterative algorithm converge to the same stable point which is very close to the global
optimum3. Moreover, the results also show that with a better initial point, i.e., a point that is close to
the optimal point, the iterative algorithm converges within fewer iterations. Nevertheless, the algorithm
convergences within less 7 iterations even with a very bad initial point, e.g., a point that is very close to
one of the receivers. This shows a good applicability of the proposed iterative algorithm.

V. CONCLUSION

In this work, we addressed the convex property of a nonlinear WPT EH model. We showed that the
harvested DC power via the nonlinear model is convex in the reciprocal of the power of the received
RF signal. This result indicates that the harvested DC power is convex in the path-loss of the RF
signal transmitting link, which facilitates WPT network designs, i.e., resource allocation, WPT devices
positioning. As an example, we provide a case study of applying the proved convexity in a WPT transmitter
positioning problem. Owning to the convexity, we approximate the non-convex problem and solve it in
a interactive manner. The simulation results confirm the converging speed of the interactive algorithm as
well as its performance in comparison to the exhaustive search.
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