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On the Optimal Precoding for MISO-WSN: One
Time Slot Detection of Multiple Binary Data

on the Same Frequency Band
Pouya Ghofrani and Anke Schmeink

Abstract—A fast multi-target detection technique–using a de-
vised precoding in a wireless sensor network (WSN)–is proposed.
The targets are detected by binary wireless sensors which only
have one or zero logical outputs, indicating a target’s presence or
absence. The goal is to simultaneously decode all sensors’ data in
one time slot at the receiver node, where all sensors transmit data
simultaneously on the same frequency band. For this to happen,
a specific geometric deployment of the sensors is presented in
the paper. The concept in this work might have similarities to
the bijective mappings in the superposition modulation. Different
channel gains and the additive white Gaussian noise are included
in the model. The system model is described in detail and
the communication scheme to fulfill a simultaneous decoding
is mathematically formulated. Then, the parametric solutions
to this general digital modulation problem are studied step by
step through several theorems, and the optimal solutions that
minimize the detection error are found. The combined effects
of the noise and the non-perfect channel state information on
the signal constellations are both analytically and numerically
investigated. In addition, two other detection scenarios with a
priori information about the targets are studied.

Index Terms—Bijective mapping, signal constellation, super-
position modulation, wireless sensor networks (WSNs).

I. INTRODUCTION

Sensor networks for surveillance and detection applications
have been investigated in many research works, covering
a plethora of system designs with a variety of objectives
and constraints for each specific application. In spite of this
diversity, there are some scenarios where the binary data of
all sensors should be decoded at the same time in order to
have instant control over the phenomenon. In other words, the
very little delay induced by time division multiplexing (TDM)
schemes might have an irreversible impact on the detection
or tracking performance. Examples of such scenarios include:
studying the behavior of particles or substances undergoing
experiments such as extreme electromagnetic excitations, live
tracking and controlling the intensively accelerated particles
emanated from instant chemical reactions, accurate shockwave
pattern acquisition, and periphery protection. Although this
might be achieved by using a conventional frequency division
multiplexing (FDM) scheme, it might not be practical in large
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Fig. 1. A circular deployment of binary wireless sensors and the sink
node (Rx) somewhere on the 3D locus of points equidistant from the binary
sensors to ensure a dominant line-of-sight propagation for all sensors (figure
modified from [1]).

networks consisting of many nodes. The main reason for this
is that in large networks, the unique frequency allocation to
each sensor might not be possible. This is generally due to
the hardware limitations or the interference with other sources.
Furthermore, the sensor replacement in this case is not simple,
as each sensor operates on a unique frequency band.

In this work, we investigate an optimal precoding scheme
to resolve the above-mentioned issues with the TDM and
FDM schemes for fast detection applications. For the sake
of compactness and to avoid ambiguity, in this paper, we
define Fji := {i, i + 1, . . . , j} for every i, j ∈ Z, where
i ≤ j. We consider a binary WSN (BWSN), as in Fig. 1,
that is characterized as follows: all n binary sensors Si,
i ∈ Fn1 , deployed for detection of up to n targets Ti, i ∈ Fn1 ,
transmit data simultaneously on the same frequency band,
the binary data of each sensor is determined depending on
the targets presence or absence, the independent targets each
have an equal presence-absence probability, and each sensor
Si covers a known area, e.g., Ai, for the detection of target
Ti. Note that introducing Ai and Ti here is only to match to
a practical implementation. In other words, the mathematical
model in this paper takes into account the final data acquired
by the sensors in each instant, regardless of how the data was
gathered from a target Ti which appeared in Ai.

A. The Conceptual Connections with Other Techniques

There are similarities between the proposed method and the
conventional communication techniques such as code division
multiple access (CDMA) (see e.g. [2], [3]), distributed beam-
forming (DBF) and superposition modulation (SuM). The sim-
ilarities mainly fall in the scope of the multiplexing concept. In
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a CDMA system, several users share the same communication
channel and frequency band, where they can simultaneously
transmit data using different codes. The receiver will then
extract each user’s data from the received signal using these
codes. The major difference between the proposed scheme
and CDMA is as follows. The CDMA is generally a spread-
spectrum method, where for any user at the receiver, other
users’ data appear like noisy signals which do not correlate
with that user’s code. Contrary to this, in the proposed model,
all sensors operate on the same narrow frequency band, and
the interference with other sensors’ data is constructive.

Another similar yet different technique is DBF. The con-
ventional beamforming (BF) is a technique in which several
antennas in a specifically arranged array focus the beam to the
receiver’s direction. This is mainly to increase the signal-to-
noise ratio (SNR) at the receiver and suppress the interference
with other users. Thus, in the BF technique, the antennas
at the transmitter need to cooperate in amplitude and phase
to shape the beam. It is clear that in this work, there is no
cooperation between the sensors as they are distributed over
an area without any cross communication link. Therefore,
a comparison with distributed beamforming might be more
relevant in this context. However, DBF can convey different
meanings in different scenarios. In the literature of wireless
sensor networking, distributed beamformers are usually mod-
eled as wireless relay channels [4]. In [4], a review of DBF
is presented, and in [5], a suboptimal solution for DBF and
power allocation is proposed, where the cooperative commu-
nication system consists of one source node, one destination
node, and several relays. Although with these descriptions our
proposed scheme in this work has some similarities to the DBF
technique due to devising the code vector, the main difference
is in their objectives. In fact, we aim at minimizing the time,
whereas in DBF, mainly the SNR maximization is intended.
In addition, contrary to the suboptimal solutions in DBF, our
solution here is optimal, since the whole data vector is decoded
within only one time step. Note that this is the least time
possible.

Considering the general description of SuM in [6], there are
fundamental differences between the proposed scheme and the
SuM. First, the SuM uses binary phase shift keying (BPSK)
modulation, whereas the proposed precoding here uses a
generalized version of on-off keying (OOK) at the transmitters.
Second, the implementation of the SuM requires a sum module
in order to perform the linear superposition of the weighted
symbols, whereas in this work, there is no physical sum
module in the system, as the final symbols are generated by
wave superposition at the receiver. Third, the SuM operates on
parallel data streams, which in fact come from one main binary
stream, whereas here, the sensors’ data are from independent
sources. Nevertheless, the proposed scheme and the SuM
might overlap when an exponential weighting is used in the
SuM. This is known as a special case of unequal power
allocation (UPA) in the related literature. In spite of this mild
similarity, and in addition to the points above, there is a
noticeable difference between the objective of the SuM and
the aim of our scheme in this work. Indeed, similar to other
conventional mappings, the SuM is devised and evaluated

mainly based on the capacity achieving and coding criteria,
whereas in this work, we aim at minimizing the transmission
and detection time. Above all, the similarities discussed so
far can only make sense when the SuM is bijective, as our
proposed scheme is based on bijective mappings. Note that a
non-bijective mapping in this work causes ambiguity in target
detection and therefore, should be avoided.

Unlike the previously discussed techniques, one definition
of network coding might overlap with the proposed model in
this paper from the objective point of view. More precisely, a
network coding employed for increasing network throughput
by communicating more information while using fewer packet
transmissions [7] can have similarities to the work presented
here from the delay reduction perspective. However, a network
coding which is defined as the coding applied to the contents of
packets in a packet network is a broad subject that is conducted
above the physical layer [7], whereas the proposed scheme
in this work lies entirely in the physical layer. In addition,
the coding in network coding is often devised by algebraic
algorithms in order to reduce the number of transmissions in a
network. The data flowing in such networks is often conducted
via multiple relay nodes that apply the coding on the data.
Contrary to this, our model here does not involve any relaying
via other nodes, and there is a direct source-destination link
for all nodes. In terms of literature and mathematical areas
such as real and discrete domains, the differences between the
proposed scheme and the network coding approaches can be
clearly seen in the relevant works such as [8] and [9].

So far, we have compared the proposed scheme, that
involved an OOK mapping, with other similar techniques
such as CDMA, DBF, SuM and network coding, separately.
However, several research works have considered different
combinations of these techniques for specific applications. In
[10], a coded modulation scheme is proposed based on block
Markov superposition transmission, where an OOK mapping
and a SuM model are employed to from an equispaced pulse
amplitude modulation constellation for an indoor visible light
communication scenario. A superposition constellation design
for wireless network coding is proposed in [11], and a sig-
nature design of sparsely spread CDMA (SCDMA) based on
superposed constellation distance analysis is proposed in [12].
The differences between our approach and the techniques
above can be found based on the previous explanations.

As we will see later, due to the bijective propery of
the precoding investigated in this paper, it shares common
concepts with sum-distinct sets studied in [13]–[18]. However,
as we will see in the next sections, the optimal precoding
for our system requires only those solutions of sum-distinct
sets that minimize the detection error at the receiver in the
presence of noise and the channel estimation errors. Therefore,
the problem formulation here and our approach toward the
solution is different from the works above.

B. Major Contributions

We discuss a model for specific delay-critical applications,
where using a shared narrow-band channel for all transmitting
sensors, the one time slot detection of the whole sensors’
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data is the only objective. In other words, we can spend as
much power as required in order to achieve this goal, though
we typically try to keep it as low as possible. In the next
step, among all the solutions—which will later be called the
amplitude allocations—that allow a one time slot detection,
we aim at finding those which minimize the detection error.
Besides the fast detection goal, this minimum error property is
the main difference with other relevant works, such as [13]–
[18]. The system model description is as close as possible
to the practical scenarios (mainly line-of-sight) as it contains
both the channel model and the additive white Gaussian
noise (AWGN). The joint effect of the noise and the non-
perfect channel state information (CSI) on the constellations is
analytically investigated using highly accurate approximations
that are followed by computer simulations. The theorems and
the proofs in this work make the major contribution to the
usage of this model. To broaden the range of applications, we
then consider other scenarios in which the number of targets is
less than n. Note that we mainly consider the model described
in Fig. 1 only for the simplicity of discussing the concepts by
visualization. In fact, the proposed scheme can be used in other
optical and wired systems as well, as long as the pulse width,
distances, and the angular design of the sensor deployment
are determined as explained in [19]. A summary of the major
contributions is as follows
• proposing a detection scenario with the discussed char-

acteristics,
• mathematical formulation of the model considering the

noise and channel coefficients,
• deriving the bijective mappings or analyzing their exis-

tence in order to simultaneously detect the data of the
sensors with minimum detection error,

• analytical and numerical investigation of the effects of
the channel errors and noise on the signal constellations,
and

• simulation of the detection accuracy in a general case.
The rest of this paper is organized as follows: In Section II,

the BWSN system model is described first and the basic
parametric precoding scheme for the problem is derived based
on our previous work in [1]. Then, this parametric model is
thoroughly investigated in Section II-A in order to obtain the
optimal solution for our BWSN model. In Section III, the
effect of the non-perfect CSI is studied in detail with analytical
derivations and numerical simulations. The possibility of an
extension to other interesting target detection scenarios is
discussed in Section IV and finally, a performance evaluation
is conducted by numerical simulations in Section V, where
the combined effects of the noise and the non-perfect CSI on
the performance are investigated.

II. THE PROPOSED BWSN SYSTEM MODEL

Similar to a multiple input single output (MISO) scenario,
the received signal at the sink node, denoted by rt, can
be expressed as rt = hTt (wt ~ bt) + nt, where ht :=

[h
(t)
1 , h

(t)
2 , . . . , h

(t)
n ]T ∈ Rn is the vector of channel coeffi-

cients, wt := [w
(t)
1 , w

(t)
2 , . . . , w

(t)
n ]T ∈ Rn is the weighting

vector we aim to devise, symbol ~ shows the Hadamard

product, bt := [b
(t)
1 , b

(t)
2 , . . . , b

(t)
n ]T ∈ {0, 1}n is the vector

containing the binary data, and nt ∈ R denotes the AWGN
with the distribution N (0, σ2

n). In the definitions above, letter
t ∈ N in the subscripts of vectors and superscripts of entries
denotes an integer indicating the time-slot index. In order
to devise the weighting vector wt, we need to estimate
the channel vector ht. A fast converging channel estimation
algorithm for WSNs is proposed in [20]. However, according
to the thorough investigation in our previous work [1], where
different solutions are discussed, we consider a reciprocal
channel response for downlink and uplink over a very short
period of time. Hereafter, we refer to this estimated channel
as vector ĥt := [ĥ

(t)
1 , ĥ

(t)
2 , . . . , ĥ

(t)
n ]T ∈ Rn that is entry-

wise available at each corresponding transmitter node. We also
denote the Hadamard division by �, and the reminder when
a is divided by b by mod(a, b). Defining wt := βvt � ĥt,
where vt :=

[
ρmod(t,n), ρmod(1+t,n), . . . , ρmod(n−1+t,n)]T is

the proposed amplitude allocation vector with ρ ∈ F∞2 for
now, and 0 < β ≤ 1 is a known parameter to all sensors, the
received signal can be expressed as follows

rt = hTt (βvt � ĥt ~ bt) + nt (1)

= β(hTt � ĥTt )(vt ~ bt) + nt (2)

≈ β[1, . . . , 1](vt ~ bt) + nt (3)

= β

n∑
i=1

ρmod(i−1+t,n)b
(t)
i + nt (4)

= β(b
(t)
kn−1

b
(t)
kn−2

. . . b
(t)
k0

)ρ + nt, (5)

where for every j ∈ Fn−10 , kj := arg
i∈Fn1

[mod(i− 1 + t, n) = j],

and (b
(t)
kn−1

b
(t)
kn−2

. . . b
(t)
k0

)ρ in Eq. (5) represents the decimal∑n
i=1 ρ

mod(i−1+t,n)b
(t)
i in a base-ρ system. Therefore, Eq. (5)

shows that the whole data vector bt, that contains the data of
all sensors, can be detected using only the information of the
received scalar rt. Note that the accuracy of the approximation
in Eq. (3) just depends on the quality of the CSI and channel
equalization. In the relations above, β was used to avoid
transmitting high amplitudes after the Hadamard division
by ĥt. This is analogous to the problems of zero-forcing
channel equalization. In fact, this scaling parameter makes
the implementation comply with the practical requirements
which are often due to the hardware limitations. Since the
channel vector in our model includes the combined effects
of all attenuation parameters and in particular, the power
decay with distance, the value of

√
R2 + L2 with R and

L defined in Fig. 1 plays an important role in setting β,
as |h(t)i |2 (i ∈ Fn1 ) for the line-of-sight (LOS) components
is proportional to 1/(

√
R2 + L2)γPL , where γPL denotes

the path-loss exponent. Note that when the carrier signal
is in the radio frequency range, due to the relatively large-
scale constructive and destructive interferences, the geometry
of the network in Fig. 1, i.e., the circular deployment of
the sensors, is of high importance. Here, we note that the
periodicity vt+mn = vt for every m ∈ Z≥0 comes from the
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circular shift property of the entries at different instants. This
plays an important role in uniformly distributing the energy
consumption among the sensors. The relations above exhibit
that from a theoretical point of view, there is no constraint
on the number of sensors (n) for this instant fusion. However,
the exponential growth of the amplitude allocation vector with
respect to n restricts this instant fusion scheme for a large
number of sensors in highly noisy environments. The reason
for this is that under noisy conditions, a relatively small β
cannot be effective, since it amplifies the noise for decoding at
the receiver. Therefore, in such cases, the main load of pulse
shaping to form the weighting vector wt should be carried
by the power amplifiers, while their output dynamic range is
limited and cannot support arbitrarily large amplitudes.

Note that in this work, the binary data vector bt was
directly used in the coding process without any pre-mapping
onto other symbols such as binary antipodal symbols. The
reason behind this idea is to exploit the energy conservation
advantage of the OOK. This means that the sensors with
no detected targets at time t do not transmit any signal. In
the following, the amplitude allocation set is defined as a
set consisting of all entries of the corresponding amplitude
allocation vector. In other words, if wt := β(xt� ĥTt ), where
xt := [x

(t)
1 , . . . , x

(t)
n ]T , the set X := {x(t)i |i ∈ Fn1} is an

amplitude allocation set. Note that contrary to xt, set X is
independent of time. The reason is that in this work, we use
a cyclic shift of x(t)i s for the next time steps and therefore,
devising xt and X are equivalent. Thus, in the following
discussions, due to the simplicity of time invariance, devising
set X is considered.

A. Choosing the Value of ρ

So far, we introduced parameter ρ as an element of F∞2 .
However, in order to be able to uniquely reconstruct the data
vector bt (or vt~bt) from the scalar rt, i.e., to have a bijective
mapping (BM) between the data vector and the received scalar,
ρ can take many values.
Theorem 1. For a BWSN with n binary sensors, and regard-
less of the mapping scheme at the transmitter (so far, we used
OOK, as bt consists of zeros and ones), there are infinite
choices for ρ ∈ R to construct a BM between the transmitter
and the receiver. For example, any sum combinations of
{1, ρ, . . . , ρn−1} for ρ = 0.3 creates a distinct scalar number,
and therefore, it creates a BM between the transmitter and the
receiver.
Proof. See Appendix A.
Mathematically speaking, a general solution to the problem is
provided by the following theorem.
Theorem 2. For any ρ ∈ Q\{0,±1} and n ∈ N, the
amplitude allocation set

{
1, ρ, . . . , ρn−1

}
for n binary sensors

creates a BM.
Proof. See Appendix B.
Considering the fact that there exists a rational number in any
neighborhood of a real number, the importance of Theorem 2
is more highlighted as any hardware dictated real-valued
choice for ρ can be approximated with arbitrary precision
while the bijective property is preserved. However, for most

of the possible ρ values which form a BM, the constella-
tion points are unequally spaced. In our MISO scenario, a
combination of different OOK schemes, i.e., with different
transmit amplitudes, are superimposed by the electromagnetic
waves at the receiver, where an amplitude shift keying (ASK)
modulation with 2n constellation points (2n-ASK) is formed.
Based on the detailed explanation about the accuracy of
the channel estimation model in [1], the constellation points
should be equispaced. Since the digital modulation scheme
in this work is based on amplitude modulation, we use the
terms ASK and BM interchangeably. Denoting a BM with nc
constellation points by nc-BM, and similarly, an equispaced
BM (EBM) with nc constellation points by nc-EBM, the
equally spaced property to have an optimal signal constellation
is proved in the following theorem. Note that the proof in
Appendix C will be reused further in Section III.
Theorem 3. If b(t)1 , b

(t)
2 , . . . , b

(t)
n are mutually independent

and identically distributed (i.i.d.) discrete random variables
with the uniform distribution U{0, 1}, the detection error
probability is minimized for a 2n-EBM.
Proof. See Appendix C.
Considering the theorem above, our objective is to find all
possible solutions. In other words, analogous to the optimal
codebook designs, e.g., in [21], and the optimal matrix constel-
lations [22], we aim at finding the amplitude allocations which
result in the corresponding EBMs. The following theorem
states a necessary and sufficient condition to obtain them.
Theorem 4. For a BWSN with n binary sensors, a 2n-EBM
at the receiver exists, if and only if the employed amplitude
allocation set is in the form of {ηti2i−1|i ∈ Fn1}, where η > 0
and ti = ±1, for every i ∈ Fn1 .
Proof. See Appendix D.

III. THE EFFECT OF THE NON-PERFECT CSI
So far, we have assumed that a close to perfect CSI is avail-

able, which is a valid assumption based on the explanations in
the previous sections. In this section, we investigate how a non-
perfect CSI affects the performance in terms of constellation
change. For clearness, we define the ith digit of integer A in
base b ∈ Z≥2 as κ(i)(A)b

:= ai, where A = (anan−1 . . . a1)b
and ai ∈ Fb−10 ∀i ∈ Fn1 . Considering the amplitude allocation
set {1, ρ, . . . , ρn−1} and Fig. 6 in Appendix C, the value of
constellation point i, denoted by mi, can be expressed as
follows

mi = β
∑n
j=1 κ

(j)
(i−1)2ρ

j−1 ∀i ∈ F2n

1 . (6)

Note that from Eq. (6), the values of αi in Fig. 6 are already
given. However, because of the non-perfect CSI, each mi has a
different error term which is induced by the channel estimation
errors at the sensor nodes. Therefore, these different error
distributions then redefine the problem to find the optimum
αis. Thus, for each constellation point mi expressed in Eq. (6),
we define ξi as the sink node-transferred error which is caused
by the channel estimation errors (eis) associated with mi. In
other words, for every i ∈ F2n

1 ,

ξi := β(hTt � ĥTt − [1, 1, . . . , 1])(vt ~ bt)

when β[1, 1, . . . , 1](vt ~ bt) = mi.
(7)
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Considering a constant channel ht := [h, h, . . . , h]T for
simplicity, the relations below follow

ξi = β(hTt � ĥTt − [1, 1, . . . , 1])(vt ~ bt) (8)

= β
(
[h, . . . , h]� [h+ e1, . . . , h+ en]

− [1, 1, . . . , 1]
)
(vt ~ bt)

(9)

= β
[ 1

1 + e1/h
− 1, . . . ,

1

1 + en/h
− 1
]
(vt ~ bt) (10)

≈ β [−e1/h, . . . ,−en/h] (vt ~ bt) (11)

= −β
n∑
j=1

κ
(j)
(i−1)2

eqj
h
ρj−1, where {q1, . . . , qn} = Fn1 . (12)

In the derivations above, Eq. (11) is obtained from Eq. (10)
using the Maclaurin series approximation 1

1+x ≈ 1 − x
for small x values, and Eq. (12) is deduced using the re-
lation β[1, 1, . . . , 1](vt ~ bt) = β

∑n
j=1 κ

(j)
(i−1)2ρ

j−1 based
on Eqs. (6,7). Note that in Eq. (12), elaborating on the exact
value of each qj is not necessary, as eis are Gaussian i.i.d.
random variables. Assuming a constant variance σ2

ei = σ2
e for

every i ∈ Fn1 , where ei ∼ N (0, σ2
ei), we obtain

−β
n∑
j=1

κ
(j)
(i−1)2

eqj
h
ρj−1 ∼ N

(
0, β2

n∑
j=1

(
κ
(j)
(i−1)2

σe
h
ρj−1

)2)
Eq. (12)
=⇒ σ2

ξi ≈
β2σ2

e

h2

n∑
j=1

(
κ
(j)
(i−1)2

)2
ρ2(j−1) (13)

=
β2σ2

e

h2

n∑
j=1

κ
(j)
(i−1)2ρ

2(j−1). (14)

For convenience, the main notations are summarized in Tab. I.
Denoting the conditional probability by Pr(·|·), and defining

∀i ∈ F2n

1 : fi(λ) :=
(
2π
(
σ2
ξi + σ2

ε

))−0.5
exp

(
−λ2

2(σ2
ξi

+ σ2
ε )

)
,

the probability of erroneous detection, PrE , can be expressed
as PrE = 1 − PrS , where the probability of successful
detection, PrS , can be written as

PrS =

2n∑
i=1

Pr(mi + ξi + ε ∈Mi|mi)Pr(mi) (15)

=

2n∑
i=1

Pr(ε+ ξi ∈Mi −mi)

n∏
j=1

1

2
(16)

=
1

2n

(
2n−2∑
i=1

∫ αi+1

−αi
fi+1(λ)dλ+

∫ α1

−∞
f1(λ)dλ+

∫ ∞
−α2n−1

f2n(λ)dλ

)
.

In Eq. (15), the terms of the form Pr(·|mi)Pr(mi), or equiv-
alently Pr(· ∩mi), are the joint probability of occurrence of
“·” and transmitting amplitudes which make mi at the receiver.
Similar to Eqs. (28,29,30) in Appendix C, the optimization
problem here can be formulated as

maximize:
α1,α2,...,α2n−2

G(α1, . . . , α2n−2)

subject to:
2n−2∑
i=1

αi ≤
D

2
, ∀i ∈ F2n−2

1 αi ≥ 0,
(17)

TABLE I
NOTATION SUMMARY.

Notation Description

Fji set of integers {i, i+ 1, . . . , j};
x , x , X scalar x, vector x, matrix X;

~ , � Hadamard product, Hadamard division;

mod(a, b) the remainder when a is divided by b;

(an, an−1, . . . , a1)b decimal
∑n
i=1 aib

i−1 in a base-b system;

mi (i ∈ F2n

1 ) the value of the ith constellation point;

ei (i ∈ Fn1 ) error of channel estimation at sensor i;

ξi (i ∈ F2n

1 ) channel estimation errors affecting mi;

ε AWGN component of the sink node;

D maximum Euclidean distance (Figure 6);

σ2
ε , σ

2
ei , σ

2
ξi

variances of ε, ei and ξi, respectively;

αi (i ∈ F2n−1
1 ) positive variables (as shown in Figure 6);

Mi (i ∈ F2n−1
2 ) (mi − αi−1,mi + αi] (detect. of mi);

M1 (−∞,m1 + α1] (detect. of m1);

M2n (m2n − α2n−1,+∞) (detect. of m2n );

S(X) , SnT (X) functiones defined in Eqs. (35,62), resp.;

T(X) , D(X) functions defined in Eqs. (37,50), resp.;

S(X)
≤nT

, T(X)
≤nT

, D(X)
≤nT

functions defined in Eqs. (89,90,91), resp.

where function G(α1, . . . , α2n−2) is defined as

G :=

2n−2∑
i=1

∫ αi

0

(fi + fi+1)(λ)dλ+

∫ D
2 −

∑2n−2
j=1 αj

0

(f2n−1 + f2n)(λ)dλ (18)

and D in this case is D = m2n − m1 = β
∑n
i=1 ρ

i−1 =

β ρ
n−1
ρ−1 . The Hessian matrix∇2G can be expressed as Eq. (19).

Similar to Eqs. (33,34), the two matrices in Eq. (19) are each
negative definite and therefore ∇2G ≺ 0, i.e., G is maximized
when ∇G = 0. Thus, for every j ∈ F2n−2

1 , it holds that

∂G

∂αj
= (fj+1 + fj)(αj) − (f2n−1 + f2n)(D2 −

∑2n−2
i=1 αi) = 0

⇒ (fj+1 + fj)(αj) = (f2n−1 + f2n)(D2 −
∑2n−2
i=1 αi). (20)

Analytically solving the set of equations in Eq. (20) is
difficult. However, in order to illustrate the effect of the
non-perfect CSI, we solve these equations numerically with
parameters n = 3, β = 1, ρ = 2, σ2

ε = 0.01 and h = 0.5.
As shown in Fig. 2, the values of αi change significantly as
the variance of the channel estimation error (σ2

e ) grows, such
that the distances between the constellation points increase in
favor of the higher constellation values. This figure also shows
that for any σ2

e , the order α1 < α2 < . . . < α7 is preserved.
Figure 3 visually demonstrates the gradual transformation of
the primary 8-EBM as σ2

e grows from zero to 5E−4. For
convenience of comparison, the equispaced constellation, i.e.,
8-EBM, is shown besides the optimum constellation in each
step. We notice that such a behavior is quite expected, as the
channel estimation errors are more amplified for constellation
points with higher values. Note that the purpose of this
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section is just to investigate the behavior of the proposed
precoding when the channel estimation errors become non-
negligible while ρ is fixed. In other words, for simplicity
reasons, the joint effect of ρ and σ2

e— in Eq. (14)—on the
optimal constellation is not studied here.

IV. OTHER DETECTION SCENARIOS

So far, we have studied a scenario in which 2n constel-
lation points were needed to uniquely decode each sensor’s
data, regardless of the number of targets. However, there are
applications in which the number of present targets is always
constant. In other words, in each instant, there are always nT
targets present at nT sensors, and our purpose is to find these
sensors. As a result, more efficient constellations should be
devised, as only

(
n
nT

)
out of the total 2n points are needed.

Theorem 5. For a scenario, where in each instant, exactly nT
sensors out of the total n binary sensors (nT < n) transmit
data as they have detected targets, the existence of an

(
n
nT

)
-

EBM is not guaranteed for arbitrary nT and n values.
Proof. See Appendix E.
Corollaries E.1 and E.2 in Appendix E are two important
results of Theorem 5, which state that an

(
n
nT

)
-EBM does not

exist for (nT , n) =
(

(tStS−1 . . . t10)2, (vSvS−1 . . . v11)2

)
,

where vi, ti ∈ {0, 1} and S ∈ N are such that nT < n and
∃m ∈ FS1 3 (tm, vm) = (1, 0), whereas an

(
n
nT

)
-EBM always

exists for nT = 1 or n− 1, regardless of the value of n.
Another potential scenario is when we have a priori knowledge
about the maximum number of targets. So in this case, we
attempt to find an

∑nT
i=0

(
n
i

)
-EBM. This is addressed in

Theorem 6, where an EBM on the ray R≥0 or R≤0 means
that all constellation points are non-negative, or non-positive,
respectively.
Theorem 6. For a scenario, where in each instant, at most nT
sensors out of the total n binary sensors (nT < n) transmit
data as they have detected targets (i.e., when the total number
of targets does not exceed nT ), there exists no

∑nT
i=0

(
n
i

)
-EBM

on the ray R≥0 or R≤0 when 2 ≤ nT ≤ n− 2.
Proof. See Appendix F.
A result of Theorem 6 is that an

∑nT
i=0

(
n
i

)
-EBM for the case

2 ≤ nT ≤ n−2 may only exist when the amplitude allocation
vector has both positive and negative entries. It is crucial to
mention that the importance of the theorems on the existence

of EBMs, such as Theorems 5 and 6, is based on Theorem 3,
which implicitly states that if an nc-EBM exists, i.e., can
be created by an amplitude allocation for a problem, then it
is the optimum constellation among all nc-BMs in terms of
detection-error minimization (note that Eq. (3) also holds for
any arbitrary number of constellation points). In other words,
if a theorem states that there is no EBM for some nT and
n values in a described scenario, it does not imply that the
optimum constellation does not exist.

V. SIMULATIONS

In this section, we evaluate the performance of the proposed
scheme in terms of detection accuracy. We consider a BWSN
with n = 3 binary sensors for detecting three independent
targets each with a uniform presence-absence probability.
Although according to our previous work [1], the channel
estimation error (CEE) is negligible, the simulations in this
section are conducted, taking into account the effects of
the CEEs for each binary sensor, as well as the AWGN of the
sink node. The main reason for this comprehensive evaluation
is the CEE amplifications occurred by vt. Therefore, since we
include the effect of the CEE for each sensor independently,
it is reasonable to assume that the actual channel vector
ht = [h

(t)
1 , h

(t)
2 , . . . , h

(t)
n ]T ∈ Rn is in fact a constant vector,

i.e., ht = [h, h, . . . , h]T ∈ Rn, in order to simplify the
process. Moreover, parameter β is set to one here, as it is
just a scaling factor that only changes the SNR. Thus, the
vector of the normalized CEE (NCEE) which is defined as
NCEE := et � ht where et := ĥt − ht, can be expressed
as NCEE = 1

het. In order to show the tolerable region for
error free detection, a simulation is conducted in which et is
fixed in the value of each entry, i.e., et = [α, α, . . . , α]T , and
thus, NCEE becomes NCEE = [αh ,

α
h , . . . ,

α
h ]T . Also for the

sake of disambiguation, the fixed noise value (nt) is denoted
by θ. Figure 4 shows the detection performance for different
values of α

h and θ, where a detailed contour plot of the figure
for θ ∈ [−0.8, 0.8] is illustrated in Eq. (5). According to this
figure, and considering the fact that the minimum Euclidean
distance between the constellation points is one, there is a
wide and almost-symmetric region of α/h and θ in which the
target detection is error free.

∇2G =


f ′1(α1) + f ′2n−1(α2n−1) f ′2n−1(α2n−1) . . . f ′2n−1(α2n−1)

f ′2n−1(α2n−1) f ′2(α2) + f ′2n−1(α2n−1)
. . .

...
... f ′2n−1(α2n−1)

. . . f ′2n−1(α2n−1)
f ′2n−1(α2n−1) . . . f ′2n−1(α2n−1) f ′2n−2(α2n−2) + f ′2n−1(α2n−1)



+


f ′2(α1) + f ′2n(α2n−1) f ′2n(α2n−1) . . . f ′2n(α2n−1)

f ′2n(α2n−1) f ′3(α2) + f ′2n(α2n−1)
. . .

...
... f ′2n(α2n−1)

. . . f ′2n(α2n−1)
f ′2n(α2n−1) . . . f ′2n(α2n−1) f ′2n−1(α2n−2) + f ′2n(α2n−1)

 .
(19)
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Fig. 2. The values of αi as a function of σ2
e , where ρ = 2 and σ2

e denotes
the variance of the channel estimation error.

Fig. 3. The 8-ASK constellation for different values of σ2
e and ρ = 2. For

comparison convenience, the equispaced constellation is shown in all steps.

Fig. 4. The detection performance when NCEE = [α
h
, α
h
, . . . , α

h
]T ,

ρ = 2 and n = 3. Here, θ is the exact value of the AWGN at the sink. Fig. 5. The contour plot of Figure 4 for −0.8 ≤ θ ≤ 0.8. The error free
region includes all the wide region in the middle.

VI. CONCLUSION

In this work, we proposed a target detection scheme in
which independent sensors simultaneously transmitted data
on the same frequency band, while detection occurred im-
mediately, within the same time slot. In fact, the introduced
approach minimized the detection time to only one time slot
which is the fastest possible for any time slot definition. This
method has potential applications in specific delay-critical
scenarios such as periphery protection and live-time tracking
of highly accelerated particles. Among all precodings that
allowed for such an instant detection, we studied those which
minimized the detection error in the network. The system
model described in this work is based on realistic assump-
tions and is applicable to both wireless and optical systems.
However, the hardware technology puts limits on the degree
of sensors’ synchronization and their dynamic range support
for transmission. The system model was investigated in detail,

taking into account the effects of the non-perfect CSI and
the AWGN of the receiver. Throughout this work, six major
theorems guided the progress of the paper with solid proofs
and useful results, and covered a wide range of scenarios for
various applications. In order to make the proposed model
more understandable, the conceptual connections with other
communication techniques were extensively discussed. The
importance of the proposed model is highlighted when it
is accompanied by conventional frequency division schemes
in large scale delay-sensitive networks. The reason is that
such networks involve many sensors, and therefore, assigning
a unique frequency band to each one is problematic. The
combined effects of the channel estimation errors and the
noise were both analytically and numerically studied, and a
comprehensive evaluation was conducted in the simulations.
The results showed that even under the non-perfect CSI and
noisy conditions, the system can still be reliable in terms of
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high accuracy.

APPENDIX A
PROOF OF THEOREM 1

We prove that for any transmitting symbols {λ0, λ1} ⊆
R, λ0 6= λ1 which represent the binary decision on a target’s
presence at each sensor, there is a finite number of ρ ∈ R
values whose mappings are non-bijective. In other words, we
show that if the binary decisions are mapped onto general
symbols λ0 and λ1 instead of 0 and 1 in bt, the number
of ρ values for which the signal constellation at the receiver
has overlaps is finite. Denoting the new data vector by
ct := [c

(t)
1 , c

(t)
2 , . . . , c

(t)
n ]T where c

(t)
i ∈ {λ0, λ1} for every

i ∈ Fn1 , the equivalent of Eqs. (3,4) for this case are

β[1, . . . , 1](vt ~ ct)+nt = β

n∑
i=1

ρmod(i−1+t,n)c
(t)
i +nt. (21)

Considering the range of the function mod(i − 1 + t, n) and
defining the polynomial f(ρ) :=

∑n−1
i=0 ωiρ

i where ωi ∈
{0, λ0−λ1, λ1−λ0}, it can be simply inferred that any overlap
of two codewords resulting in a non-bijective mapping can be
expressed as a root of function f(ρ). Therefore, the number
of non-bijective mappings produced by

∑n
i=1 ρ

mod(i−1+t,n)c
(t)
i

in Eq. (21) will not exceed the number of roots of f(ρ) for all
possible definitions of this function. Thus, for every n, there
are at most (n − 1)3n values of ρ for which the mapping is
not bijective. �

APPENDIX B
PROOF OF THEOREM 2

Assume that for ρ = ρ0, where ρ0 ∈ Q\{0,±1}, the
mapping is not bijective, i.e., either case (I): there exists
U,V ⊆ Fn1 , such that U,V 6= ∅, U 6= V, and

∑
i∈U ρ

i−1
0 =∑

i∈V ρ
i−1
0 , or case (II): there exists W ⊆ Fn1 such that

W 6= ∅ and
∑
i∈W ρi−10 = 0. Here in this proof, a|b denotes

that integer a divides integer b. First, we consider case (I).
Expressing ρ0 as ρ0 = m

n where m ∈ Z≥0, n ∈ Z, n 6= 0 and
gcd(m,n) = 1, we have∑

i∈U∩{Fn1 \V}

mi−1/ni−1 =
∑

i∈V∩{Fn1 \U}

mi−1/ni−1. (22)

Obviously, I := (U ∩ {Fn1\V}) ∪ (V ∩ {Fn1\U}) 6= ∅, as
otherwise U = V. So I has minimum and maximum values,
denoted by s and t, respectively. Multiplying Eq. (22) by
m1−snt−1 yields∑

i∈U∩{Fn1 \V}

mi−snt−i =
∑

i∈V∩{Fn1 \U}

mi−snt−i. (23)

Since the exponents in Eq. (23) are all non-negative, and i = s
occurs exactly in one side of Eq. (23) as (U∩{Fn1\V})∩(V∩
{Fn1\U}) = ∅, the relation above implies that m|nt−s and
since gcd(m,n) = 1 and m ∈ Z≥0, we have m = 1. Thus,∑

i∈U∩{Fn1 \V}

nt−i =
∑

i∈V∩{Fn1 \U}

nt−i. (24)

For simplicity and without loss of generality, assume that t ∈
U ∩ {Fn1\V}. Thus, Eq. (24) yields

1 +
∑

i∈U∩{Fn1 \V},i6=t

nt−i = n
∑

i∈V∩{Fn1 \U}

nt−i−1

⇒ n

(∑
i∈V∩{Fn1 \U}

nt−i−1 −
∑

i∈U∩{Fn1 \V},i6=t

nt−i−1
)

︸ ︷︷ ︸
∈Z

= 1. (25)

As a result, n|1 which implies that ρ0 = ±1. This con-
tradicts the primary assumption ρ0 ∈ Q\{0,±1}. Now,
let’s assume the second case occurs. Expressing ρ0 in
terms of m and n as in case (I),

∑
i∈W ρi−10 = 0

yields
∑
i∈Wmi−1nW−i = 0, where W := max{W}.

This means that mW−1 = −
∑
i∈W\W mi−1nW−i or

mW−w = −
∑
i∈W\W mi−wnW−i where w := min{W}.

If |W| = 1, we obtain ρ0 = 0 which contradicts ρ0 ∈
Q\{0,±1}. Thus, assuming |W| > 1, the obtained rela-
tion implies that m|mW−w = −

∑
i∈W\W mi−wnW−i =

−nW−w −m
∑
i∈W\W,wm

i−w−1nW−i. Thus, m|nW−w and
since gcd(m,n) = 1 and m ∈ Z≥0, we obtain m = 1.
Substituting this value into the recent equation yields 1 =
−nW−w−

∑
i∈W\W,w n

W−i. This implies that n|1. Therefore,
ρ0 = ±1, and the assertion follows by contradiction. �

APPENDIX C
PROOF OF THEOREM 3

Defining the probability density function (PDF) of the noise
at the sink node as f(λ) := 1√

2πσ2
e
−λ2

2σ2 , and denoting the
constellation point by mi, the probability (Pr) of error in
detection, denoted by PrE , can be expressed as follows

PrE = 1−
2n∑
i=1

Pr(mi + λ ∈Mi|mi)Pr(mi) (26)

= 1−
2n∑
i=1

Pr(λ ∈Mi −mi)

n∏
j=1

1

2
(27)

= 1− 1

2n

(
2n−2∑
i=1

∫ αi+1

−αi
f(λ)dλ+

∫ α1

−∞
f(λ)dλ+

∫ ∞
−α2n−1

f(λ)dλ

)
,

where M1 := (−∞,m1 + α1], Mi := (mi − αi−1,mi +
αi] ∀i ∈ F2n−1

2 , M2n := (m2n − α2n−1,+∞), and αis are
positive variables as shown in Figure 6. Thus, the problem is

maximize:
α1,...,α2n−1

2n−2∑
i=1

∫ αi+1

−αi
f(λ)dλ+

∫ α1

−∞
f(λ)dλ+

∫ ∞
−α2n−1

f(λ)dλ (28)

subject to: 2

2n−1∑
i=1

αi = D (note thatD := m2n −m1) (29)

or equivalently

maximize:
α1,α2,...,α2n−2

2n−2∑
i=1

∫ αi

0

f(λ)dλ+

∫ D
2 −

∑2n−2
j=1 αj

0

f(λ)dλ, (30)
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Fig. 6. 2n-ASK in a general form where the constellation points are spaced by αi values. Here, the fixed parameter D is the maximum Euclidean distance.

subject to:
2n−2∑
i=1

αi ≤
D

2
, αi ≥ 0 ∀i ∈ F2n−2

1 (31)

where Eq. (30) was derived from Eqs. (28,29) by eliminating
the dependent α2n−1, excluding the constant terms and using∫ αi+1

−αi
f(λ)dλ =

∫ αi

0

f(λ)dλ+

∫ αi+1

0

f(λ)dλ (32)

which holds for even functions. Denoting the objective func-
tion in Eq. (30) by function g and using α2n−1 instead of
D
2 −

∑2n−2
j=1 αj for compactness, the Hessian is expressed

in Eq. (33). Thus, defining z := [z1, z2, . . . , z2n−2]T ∈
{R2n−2\0}, and considering that f ′(λ) = −λ

σ2
√
2πσ2

e
−λ2

2σ2 < 0
for λ > 0, one can simply prove that for every z ∈
{R2n−2\0},

zT∇2gz =

2n−2∑
i=1

f ′(αi)z
2
i +f ′(α2n−1)

(
2n−2∑
i=1

zi

)2
< 0. (34)

Therefore, ∇2g is negative definite (∇2g ≺ 0), i.e., g is
maximized when ∇g = 0. ∀j ∈ F2n−2

1 : ∂g
∂αj

= f(αj) −

f(α2n−1) = 0
αi≥0⇐⇒ α1 = α2 = · · · = α2n−1 = D

2n+1−2 . �

APPENDIX D
PROOF OF THEOREM 4

Remark 1. The procedure in this proof will be used to prove
Theorem 6 in Appendix F.
Definition 1. For every nonempty set X ⊆ R and every y, z ∈
R, y + zX := {y + zx|x ∈ X}.
For our problem, an EBM constellation can be formulated as
δ+ηF2n−1

0 , where δ ∈ R and η ∈ R>0. Since OOK is used at
the transmitter, 0 ∈ δ+ηF2n−1

0 . Therefore, ∃P ∈ F2n−1
0 3 δ =

−Pη, which means δ + ηF2n−1
0 = ηF2n−1−P

−P . Thus, in order
to prove the necessary condition, it is sufficient to show that
if ηF2n+M−1

M = {0}
⋃
S(Fn1 ) where M ∈ F0

1−2n , η ∈ R>0

and for every nonempty set X ⊆ Fn1 , S(X) is defined on the
amplitude set {a1, a2, . . . , an} ⊂ R as

S(X) :=

{∑
i∈Y

ai

∣∣∣Y ⊆ X,Y 6= ∅
}
, (35)

then {ai|i ∈ Fn1} = {η(−1)mi2i−1|i ∈ Fn1}, where
m1,m2, . . . ,mn ∈ {0, 1} are such that the binary repre-
sentation of −M is −M = (mnmn−1 . . .m1)2. The proof
is as follows. Without loss of generality, let’s assume that
a1 < a2 < . . . < an. Thus, ηM = min{ηF2n+M−1

M } =

min{{0}
⋃
S(Fn1 )} and therefore, it holds that

ifM 6= 0 then∃L ∈ Fn1 such thatM =
1

η

L∑
i=1

ai,

ai < 0 for all i ∈ FL1 and ai > 0 for all i ∈ FnL+1.

(36)

Definition 2. For any set X, |X| denotes the numbers
of elements in X with distinct numerical values,
when each member of the set takes its corresponding
numerical value, while |X|S is the number of distinct
symbolic elements in X, regardless of their corresponding
numerical values, where symbolic elements x1, x2 ∈ X,
x1 :=

∑
i∈W1

bi, x2 :=
∑
i∈W2

bi are called distinct, if
W1 6= W2. For example, if b1 = b2 = 1, b3 = 2 and
X = {b1, b2, b1 + b2, b2 + b1, b3, b3}, we have |X| = 2 as
values of X are {1, 2}, and |X|S = 4, as symbolic elements
of X are {b1, b2, b1 + b2, b3}.

Corollary D.1. T(Fn1 ) = F2n−1
1 , where, for every nonempty

subset X of Fn1 , T(X) is defined as

T(X) :=

{∑
i∈Y

|ai|
η

∣∣∣Y ⊆ X,Y 6= ∅
}
. (37)

Proof D.1: It is clear that ai 6= 0∀i ∈ Fn1 , as otherwise
|ηF2n+M−1

M | = 2n 6= |{0}
⋃

S(Fn1 )|. On the other hand,
since for every i ∈ Fn1 , ai ∈ {0}

⋃
S(Fn1 ) = ηF2n+M−1

M ,
we conclude that T(Fn1 ) ⊆ Z, and since T(Fn1 ) ⊆ R≥0, we
have min {T(Fn1 )} ≥ 1. Also max{T(Fn1 )} = 1

η

∑n
i=1 |ai|,

1

η

n∑
i=1

|ai| = −
1

η

L∑
i=1

ai +
1

η

n∑
i=L+1

ai (38)

= −M +
1

η
max

{
{0}

⋃
S(Fn1 )

}
(39)

= −M +
1

η
max

{
ηF2n+M−1

M

}
= 2n − 1, (40)

⇒ T(Fn1 ) ⊆ F2n−1
1 . (41)

Corollary D.1.1. |T(Fn1 )|S = |T(Fn1 )|. In other words, if u :=
1
η

∑
i∈U |ai| and v := 1

η

∑
i∈V |ai|, where U,V ⊆ Fn1 , U,V 6=

∅, and U 6= V, then u 6= v.
Proof D.1.1: If u = v, then

∑
i∈U |ai| =

∑
i∈V |ai|, so∑

i∈U∩{Fn1 \V}

|ai| =
∑

i∈V∩{Fn1 \U}

|ai| (42)

where, due to (U ∩ {Fn1\V})∩ (V ∩ {Fn1\U}) = ∅, the equal
terms in both sides have been removed. Equation (42) can be
written as

∑
i∈A ai =

∑
i∈B ai, where

A := (U ∩ {Fn1\V} ∩ FnL+1) ∪ (V ∩ {Fn1\U} ∩ FL1 ) (43)

B := (V ∩ {Fn1\U} ∩ FnL+1) ∪ (U ∩ {Fn1\V} ∩ FL1 ). (44)
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From the definitions above, one can simply prove that A∩B =
∅. Further, we note that A 6= B. To prove this, let’s assume
A = B. From A ∩ B = ∅, we obtain A = B = ∅, which
yields

U ∩ {Fn1\V} ∩ FnL+1 = ∅, (45)

V ∩ {Fn1\U} ∩ FL1 = ∅, (46)
V ∩ {Fn1\U} ∩ FnL+1 = ∅, (47)

U ∩ {Fn1\V} ∩ FL1 = ∅. (48)

From Eqs. (45,48), we have U∩{Fn1\V}∩Fn1 = U∩{Fn1\V} =
∅ which means U ⊆ V. Similarly, from Eqs. (46,47), we have
V ∩ {Fn1\U} ∩ Fn1 = V ∩ {Fn1\U} = ∅ which means V ⊆ U.
Therefore, we infer U = V which contradicts the assumption
of Corollary D.1.1. As a result of this part, we have A 6= B.
On the other hand, since A,B ⊆ Fn1 , the result A 6= B yields∑
i∈A ai,

∑
i∈B ai ∈ {0}∪S(Fn1 ) and

∑
i∈A ai 6=

∑
i∈B ai, as

otherwise |ηF2n+M−1
M | 6= |{0}

⋃
S(Fn1 )|. This result contra-

dicts
∑
i∈A ai =

∑
i∈B ai and the assertion follows. �

From Corollary D.1.1, Eq. (41), and the fact that in terms of
symbolic elements generated by set function T(X), we have
|T(Fn1 )|S = 2n − 1, it is concluded that T(Fn1 ) = F2n−1

1 and
Corollary D.1 follows. �
Defining

{ci|i ∈ Fn1} := {|ai|/η|i ∈ Fn1} ,
where 0 < c1 < c2 < . . . < cn

(49)

and a summation on this set for every X
6=∅
⊆ Fn1 as

D(X) :=

{∑
i∈Y

ci

∣∣∣Y ⊆ X,Y 6= ∅
}
, (50)

it is clear that T(Fn1 ) = D(Fn1 ). Thus, from Corollary D.1, we
have D(Fn1 ) = F2n−1

1 .
Corollary D.2. ∀i ∈ Fn1 : ci = 2i−1.
Proof D.2: For i = 1, we have c1 = min{D(Fn1 )} =
min{F2n−1

1 } = 21−1 and for i = 2, we have c2 =
min{D(Fn1 )\c1} = min{F2n−1

1 \1} = 22−1. Now let’s assume
that for every m ∈ Fk1 where k ≤ n − 1, the relation
cm = 2m−1 holds. It suffices to prove that ck+1 = 2k.
Corollary D.2.1. ∀x ∈ {D(Fn1 )\D(Fk1)} : x ≥ ck+1.
Proof D.2.1: Assume that ∃x ∈ {D(Fn1 )\D(Fk1)} such that
x < ck+1. Thus, x ∈ D(Fn1 ) and x 6∈ D(Fk1). From x ∈
D(Fn1 ), it yields that ∃α1, α2, . . . αn ∈ {0, 1} such that x =∑n
i=1 αici, and from x 6∈ D(Fk1), it is concluded that ∃j >

k 3 αj 6= 0. Hence, x can be expressed as x = cj + ∆, where
∆ ≥ 0. Therefore, since sequence (ci)

n
i=1 is increasing, we

obtain the relation ck+1 ≤ cj ≤ x < ck+1 which contradicts
our assumption. �
Corollary D.2.2. ck+1 ∈ {D(Fn1 )\D(Fk1)}.
Proof D.2.2: It is clear that ck+1 ∈ D(Fn1 ), so we prove that

ck+1 6∈ D(Fk1). If ck+1 ∈ D(Fk1), then it can be written
as a sum of several cis, where i ∈ Fk1 . This implies that
|D(Fn1 )| < 2n − 1, as one member is repitetive. On the other
hand |D(Fn1 )| = |F2n−1

1 | = 2n − 1, which contradicts the
assumption we made. �
From the assertions above, it is deduced that

ck+1 = min{D(Fn1 )\D(Fk1)} = min{F2n−1
1 \D(Fk1)}. (51)

On the other hand, according to the assumption cm =
2m−1∀m ∈ Fk1 , we have min{D(Fk1)} = 1 and
max{D(Fk1)} =

∑k
i=1 2i−1 = 2k − 1. Also similar to

Corollary D.1.1, since the symbolic function
∑
i∈Y ci in the

definition of D(X) returns distinct numerical values when
X = Fn1 , as otherwise D(Fn1 ) 6= F2n−1

1 , the symbolic
set D(Fk1) should also return distinct numerical values, as
Fk1 ⊆ Fn1 . This means that |D(Fk1)| = |D(Fk1)|S = 2k − 1.
Thus, from min{D(Fk1)} = 1, max{D(Fk1)} = 2k − 1,
and |D(Fk1)| = 2k − 1, we infer D(Fk1) = F2k−1

1 . Hence,
ck+1 = min{F2n−1

1 \D(Fk1)} = min{F2n−1
1 \F2k−1

1 } = 2k

and therefore, Corollary D.2 follows by strong induction. �
As a result of Corollary D.2 and Definition (49), we have

n⋃
i=1

{η2i−1}=

n⋃
i=1

{|ai|}=

(
L⋃
i=1

{−ai}

)⋃(
n⋃
i=L+1

{ai}

)
. (52)

Considering the fact that there is only one binary represen-
tation for any non-negative integer −M , Eq. (52) implies
that {ai|i ∈ Fn1} = {η(−1)mi2i−1|i ∈ Fn1}, where −M =
(mnmn−1 . . .m1)2. So far, Theorem 4 has been proved for
M ∈ F−11−2n . For the case of M = 0, it is obvious that all
ai values must be positive and there is no combination of
ais which equals M . Thus, by eliminating the zero member
from both sides of ηF2n+M−1

M = {0} ∪ S(Fn1 ), the problem is
converted to the previous case (starting from Corollary D.1)
and furthermore, we have S(X) = ηT(X) = ηD(X). This
completes the proof of the necessary condition. �
For the case of sufficient condition, we should prove that
if {ai|i ∈ Fn1} = {η(−1)mi2i−1|i ∈ Fn1}, where −M =
(mnmn−1 . . .m1)2, then {0}

⋃
S(Fn1 ) = ηF2n+M−1

M . For
n = 1, we have M = 0 or M = −1. If M = 0,
{0}

⋃
S(Fn1 ) = {0, η} = ηF2n+M−1

M , and if M = −1,
{0}

⋃
S(Fn1 ) = {0,−η} = ηF2n+M−1

M . Thus, the assertion
holds for n = 1. Similarly, for n = 2, one can simply show
that {0}

⋃
S(Fn1 ) = ηF2n+M−1

M holds for all M ∈ F0
−3. Now

let’s assume the assertion holds for n = k and all M ∈ F0
1−2k

where −M = (mkmk−1 . . .m1)2. It suffices to prove that it
also holds for n = k + 1 and every M ′ ∈ F0

1−2k+1 , where
−M ′ = (m′k+1m

′
k . . .m

′
1)

2
. The proof is as follows. Since

E := {ai|i ∈ Fk+1
1 } = {η(−1)m

′
i2i−1|i ∈ Fk+1

1 }, (53)

∇2g =


f ′(α1) + f ′(α2n−1) f ′(α2n−1) . . . f ′(α2n−1)

f ′(α2n−1) f ′(α2) + f ′(α2n−1)
. . .

...
... f ′(α2n−1)

. . . f ′(α2n−1)
f ′(α2n−1) . . . f ′(α2n−1) f ′(α2n−2) + f ′(α2n−1)

 . (33)



11

we have {E\η(−1)m
′
k+12k} = {η(−1)m

′
i2i−1|i ∈ Fk1}. Thus,

the assumption we made for n = k yields {0} ∪ G =

ηF2k+M ′′−1
M ′′ , where G :=

{∑
i∈Y gi

∣∣Y ⊆ Fk1 ,Y 6= ∅
}

,

k⋃
i=1

{gi} := {E\aex|aex := η(−1)m
′
k+12k, ex ∈ Fk+1

1 }, (54)

and −M ′′ := (m′km
′
k−1 . . .m

′
1)

2
. From M ′ ∈ F0

1−2k+1 ,
M ′′ ∈ F0

1−2k , the relation M ′′ = M ′ + m′k+12k, and the
fact that m′k+1 ∈ {0, 1}, the relations in Eqs. (55-59) hold
and the assertion follows by induction. �

APPENDIX E
PROOF OF THEOREM 5

We prove that for some pairs of (nT , n), nT < n, there
exists an EBM, whereas for some other pairs, such a mapping
does not exist. Corollaries E.1 and E.2 provide a wide range
of solutions for each case.
Corollary E.1. There exists no EBM for all pairs of the form

(nT , n) =
(

(tStS−1 . . . t10)2, (vSvS−1 . . . v11)2

)
, (60)

where vi, ti ∈ {0, 1} and S ∈ N are such that nT < n and

∃m ∈ FS1 3 tm = 1 and vm = 0. (61)

Proof E.1: Let’s assume that such a mapping exists. Defining

SnT (Fn1 ) :=

{∑
i∈Y

ai

∣∣∣Y ⊆ Fn1 , |Y| = nT

}
(62)

analogous to Appendix D, there exists δ ∈ R such that
SnT (Fn1 ) = δ + ηFnc−10 , where nc :=

(
n
nT

)
and η ∈ R>0.

Expressing 1
η (ai − δ

nT
) as 1

η (ai − δ
nT

) =
⌊
1
η (ai − δ

nT
)
⌋

+ pi
for every i ∈ Fn1 , where bxc denotes the floor function and
0 ≤ pi < 1 ∀i ∈ Fn1 , and assuming that j, k ∈ Fn1 are
two arbitrarily chosen indices, we first prove that pj = pk.
The proof is as follows. Since nT < n, there exists a
set W ⊆ Fn1 , such that |W| = nT − 1, and j, k 6∈ W.
Defining J := W ∪ {j} and K := W ∪ {k}, it is clear that∑
i∈J ai,

∑
i∈K ai ∈ SnT (Fn1 ) = δ + ηFnc−10 . As a result,

we have
∑
i∈J

1
η (ai − δ

nT
),
∑
i∈K

1
η (ai − δ

nT
) ∈ Z. From∑

i∈J
1
η (ai − δ

nT
) ∈ Z, the relations below follow∑

i∈J
ainT−δ
ηnT

=
(∑

i∈J
⌊
ainT−δ
ηnT

⌋
+
∑
i∈J pi

)
∈ Z (63)

⇒
∑
i∈J pi =

(∑
i∈J\j pi + pj

)
∈ Z (64)

⇒
(∑

i∈J\j pi −
⌊∑

i∈J\j pi
⌋

+ pj
)
∈ Z (65)

⇒
(∑

i∈W pi −
⌊∑

i∈W pi
⌋

+ pj
)

∈ Z (66)

Since
∑
i∈W pi −

⌊∑
i∈W pi

⌋
∈ [0, 1) and 0 ≤ pj < 1, we

obtain
0 ≤

∑
i∈W

pi −
⌊∑
i∈W

pi

⌋
+ pj < 2. (67)

Relations (66) and (67) imply that

pj =

{
0 if

∑
i∈W pi ∈ Z;

1−
∑
i∈W pi+

⌊∑
i∈W pi

⌋
else. (68)

Similarly, it can be proved that

pk =

{
0 if

∑
i∈W pi ∈ Z;

1−
∑
i∈W pi+

⌊∑
i∈W pi

⌋
else. (69)

Equations (68,69) imply that pj = pk. As a result, p := p1 =
p2 = . . . = pn. Defining K :=

∑
i∈J pi = |J|p = nT p, we

obtain p = K
nT

. Note that according to Eq. (64), K ∈ Z. Thus,
Eq. (62) and the assumption SnT (Fn1 ) = δ + ηFnc−10 yield

Fnc−10 =
1

η
(SnT (Fn1 )− δ) (70)

=

{∑
i∈Y

ainT − δ
ηnT

∣∣∣∣Y ⊆ Fn1 , |Y| = nT

}
(71)

=

{∑
i∈Y

(⌊ainT − δ
ηnT

⌋
+
K

nT

)∣∣∣∣Y ⊆ Fn1 , |Y| = nT

}
(72)

=

{
K +

∑
i∈Y

⌊ainT − δ
ηnT

⌋∣∣∣∣Y ⊆ Fn1 , |Y| = nT

}
(73)

=K +

{∑
i∈Y

⌊ainT − δ
ηnT

⌋∣∣∣∣Y ⊆ Fn1 , |Y| = nT

}
. (74)

From Fnc−10 −K = F−K+nc−1
−K and Eqs. (71,74), we have{∑

i∈Y

⌊ainT − δ
ηnT

⌋∣∣∣∣Y ⊆ Fn1 , |Y| = nT

}
= F−K+nc−1

−K . (75)

Thus, by adding up the members of the sets in both sides
of Eq. (75) and considering the fact that the number of
repetitions for each particular b 1η (ai − δ

nT
)c is

(
n−1
nT−1

)
, the

relations in Eqs. (76-83) are concluded (a|b means a divides
b). On the other hand, from the Lucas’ theorem [23] for prime
modulus two, we have(

n− 1

nT

)
2≡
(

0

0

) S∏
i=1

(
vi
ti

)
(84)

where tis and vis were defined in Eqs. (60,61). Now, if we
apply the condition in Eq. (61) on Eq. (84), we get(

n− 1

nT

)
2≡

S∏
i=1

(
vi
ti

)
2≡
(
vm
tm

)
︸ ︷︷ ︸

=0

S∏
i=1
i6=m

(
vi
ti

)
2≡ 0 (85)

which contradicts Eq. (83) and the assertion follows. �
Corollary E.2. For all pairs of the form (nT , n) = (1, n) or
(nT , n) = (n−1, n), an EBM always exists, regardless of the
value of n.

Proof E.2: Considering the definitions in Corollary E.1, for
nT = 1, the existence of an EBM is obvious, as due to
S1(Fn1 ) = {a1, a2, . . . , an}, the values of ais which fulfill
the EBM condition S1(Fn1 ) = δ + ηFnc−10 are already given
by this formula. Now, we consider the case nT = n − 1.
Assuming {a1, a2, . . . , an} = δ0

nT
+ η0Fn−10 where η0 ∈ R>0

and δ0 ∈ R, we have

Sn−1(Fn1 ) = (
∑n
i=1 ai)− S1(Fn1 ) (86)

= (nT + 1) δ0nT +
(
η0
∑n−1
i=0 i

)
−
(
δ0
nT

+ η0Fn−10

)
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= δ0 + η0

(
n(n−1)

2 − Fn−10

)
(87)

= δ0 + η0F
(n−1)(n2 )

(n−1)(n2−1)
, (88)

and the assertion follows. �

APPENDIX F
PROOF OF THEOREM 6

Let’s assume that for nT 6= 1, n − 1, an
∑nT
i=0

(
n
i

)
-EBM

exists on half-lines R≥0 or R≤0. Defining nc :=
∑nT
i=0

(
n
i

)
and analogous to Eq. (35) in Appendix D, ∀X ⊆ Fn1 ,

S(X)
≤nT

:=

{∑
i∈Y

ai

∣∣∣∣Y ⊆ X , |Y| ≤ nT ,Y 6= ∅
}
, (89)

T(X)
≤nT

:=

{∑
i∈Y

|ai|
η

∣∣∣∣Y ⊆ X, |Y| ≤ nT ,Y 6= ∅
}
, (90)

D(X)
≤nT

:=

{∑
i∈Y

ci

∣∣∣∣Y ⊆ X , |Y| ≤ nT ,Y 6= ∅
}
, (91)

where {ci|i ∈ Fn1} was defined in Eq. (49), we infer ∃M ∈
{0, 1 − nc}, η ∈ R>0 such that ηFM+nc−1

M = {0}
⋃

S(Fn1 )
≤nT

.

Note that in Eqs. (89-91), X can be any subset of Fn1 , regard-
less of |X|. Let’s consider the proof procedure in Appendix D
as an algorithm and replace S(X), T(X), D(X) and 2n with
S(X)
≤nT

, T(X)
≤nT

, D(X)
≤nT

and nc, respectively, to make an equivalent

algorithm (EA) for Appendix F. Denoting the corresponding
corollaries in EA by prefix E, it can be seen that Corollary E-
D.1 is based on Corollary E-D.1.1, while the proof of the
latter requires

∑
i∈A ai,

∑
i∈B ai ∈ {0} ∪ S(Fn1 )

≤nT
. For this to

happen, we only need to show |A|, |B| ≤ nT , which can be
simply deduced from Eqs. (43,44), considering |U|, |V| ≤ nT
in Corollary E-D.1.1 and the fact that L = 0 or n for half-
lines R≥0 and R≤0, respectively. Thus, Corollary E-D.1 holds.
Similarly, Corollaries E-D.2.1 and E-D.2.2 hold here for every
step k ∈ Fn−11 , i.e., ∀k ∈ Fn−11 ,∀x ∈ {D(Fn1 )

≤nT
\D(Fk1)
≤nT

} : x ≥

ck+1 and ck+1 ∈ {D(Fn1 )
≤nT

\D(Fk1)
≤nT

}. As a result, the equivalent

S(Fk+1
1 ) = S(Fk+1

1 \ex)
⋃(

aex + S(Fk+1
1 \ex)

)⋃{
aex

}
(55)

= G
⋃(

η(−1)m
′
k+12k + G

)⋃{
η(−1)m

′
k+12k

}
(56)

=
(
ηF2k+M ′′−1

M ′′

∖
0
)⋃(

η(−1)m
′
k+12k +

(
ηF2k+M ′′−1

M ′′

∖
0
))⋃{

η(−1)m
′
k+12k

}
(57)

=
(
ηF2k+M ′′−1

M ′′

∖
0
)⋃(

ηF(1+(−1)m
′
k+1 )2k+M ′′−1

(−1)m
′
k+12k+M ′′

∖
η(−1)m

′
k+12k

)⋃{
η(−1)m

′
k+12k

}
(58)

=
(
ηF2k+1+M ′−1

M ′

∖
0
)
⇒

{
0
}⋃

S(Fk+1
1 ) = ηF2k+1+M ′−1

M ′ , (59)

(
n− 1

nT − 1

) n∑
i=1

⌊ainT − δ
ηnT

⌋
=

−K+nc−1∑
i=−K

i =
nc(nc − 1)

2
−Knc

=
1

2

(
n

nT

)((
n

nT

)
− 1

)
−K

(
n

nT

)
(76)

⇒ 2

(
n− 1

nT − 1

) n∑
i=1

⌊ainT − δ
ηnT

⌋
=

((
n− 1

nT

)
+

(
n− 1

nT − 1

))
×
((

n

nT

)
− 1− 2K

)
(77)

⇒
(
n− 1

nT − 1

)∣∣∣∣∣
(
n− 1

nT

)((
n− 1

nT

)
+

(
n− 1

nT − 1

)
− 1− 2K

)
(78)

⇒
(
n− 1

nT − 1

)∣∣∣∣∣
(
n− 1

nT

)((
n− 1

nT

)
− 1− 2K

)
(79)

⇒ ∃q ∈ Z 3 (n− 1)!

(nT − 1)!(n− nT )!
q =

(n− 1)!

(nT )!(n− nT − 1)!
×
((

n− 1

nT

)
− 1− 2K

)
(80)

⇔ qnT = (n− nT )

((
n− 1

nT

)
− 1− 2K

)
(81)

⇒ qnT
2≡ (n− nT )

((
n− 1

nT

)
− 1− 2K

)
(82)

⇒
(
n− 1

nT

)
2≡ 1 (Eq. (60) implies n

2≡ 1 ,nT
2≡ 0). (83)
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of Eq. (51) also holds as follows

∀k ∈ Fn−11 : ck+1 = min
{
D(Fn1 )
≤nT

\D(Fk1)
≤nT

}
= min

{
Fnc−11 \D(Fk1)

≤nT

}
.

(92)

Now we run the EA and follow the strong induction steps
in Corollary E-D.2. We obtain the following three relations:
D(Fn1 )
≤nT

= Fnc−11 , ∀i ∈ FnT+1
1 : ci = 2i−1, and cnT+2 =

min{D(Fn1 )
≤nT

\D(FnT+1
1 )
≤nT

} = min{Fnc−11 \D(FnT+1
1 )
≤nT

}. On the

other hand, as cis in Eq. (49) are sorted in ascending order,
min{D(FnT+1

1 )
≤nT

} = c1 = 1, max{D(FnT+1
1 )
≤nT

} =
∑nT+1
i=2 ci =

2nT+1 − 2 and |D(FnT+1
1 )
≤nT

| = |D(FnT+1
1 )
≤nT

|S = 2nT+1 − 2.

Thus,
D(FnT+1

1 )
≤nT

= F2nT+1−2
1 , (93)

and in a similar way, one can simply prove that

D(FnT1 )
≤nT−1

= F2nT−2
1 . (94)

Note that Eq. (94) can also be deduced from Eq. (93)
by replacing nT with nT − 1. So cnT+2 =

min{Fnc−11 \F2nT+1−2
1 } = 2nT+1 − 1. Hereafter,

Corollary E-D.2 stops at calculating cnT+3, as the induction
assumption in the previous step is not fulfilled due to
cnT+2 = 2nT+1 − 1 6= 2nT+1. Also, it is easy to prove that

∀k ∈ Fn−11 : D(Fk+1
1 )
≤nT

= D(Fk1)
≤nT

⋃(
ck+1 +D(Fk1)

≤nT−1

)⋃
{ck+1}

(95)
by elimination and re-addition of element ck+1—similar to
Eq. (55)—and applying the constraint on the number of
elements. Note that Eq. (95) has two independent parameters
k and nT . Thus, the following relation also holds

∀k ∈ Fn−11 : D(Fk+1
1 )

≤nT−1
= D(Fk1)
≤nT−1

⋃(
ck+1+D(Fk1)

≤nT−2

)⋃
{ck+1}.

(96)
Substituting k = nT + 1 and k = nT into Eqs. (95,96),
respectively, yields

D(FnT+2
1 )
≤nT

= D(FnT+1
1 )
≤nT

⋃(
cnT+2+D(FnT+1

1 )
≤nT−1

)⋃
{cnT+2},

(97)
D(FnT+1

1 )
≤nT−1

= D(FnT1 )
≤nT−1

⋃(
cnT+1 + D(FnT1 )

≤nT−2

)⋃
{cnT+1}.

(98)
Before proceeding with the procedure above, we prove Corol-
lary F.1.
Corollary F.1. 3(2nT )− 2 ∈ Fnc−11 .

Proof F.1: We need to prove that ∀n, nT 3 1 < nT <
n − 1 : 3(2nT ) − 2 ≤ nc − 1 =

∑nT
i=0

(
n
i

)
− 1.

Considering the increasing property of
∑nT
i=0

(
n
i

)
, i.e.,∑nT

i=0

(
n+1
i

)
=
∑nT
i=0

(
n
i

)
+
(
n
i−1
)
, the minimum of

∑nT
i=0

(
n
i

)
occurs at n = nT + 2, according to nT < n − 1. So it is
sufficient to prove that 3(2nT ) − 1 ≤

∑nT
i=0

(
nT+2
i

)
, where∑nT

i=0

(
nT+2
i

)
=

∑nT+2
i=0

(
nT+2
i

)
−
(
nT+2
nT+1

)
−
(
nT+2
nT+2

)
=

4(2nT ) − nT − 3. So the inequality reduces to

3(2nT ) − 1 ≤ 4(2nT ) − nT − 3 ⇔ nT + 2 ≤ 2nT ∀nT ≥ 2,
that can be proved by induction. �
By substituting Eq. (98) into Eq. (97) and
using Eq. (93,94), Eqs. (99-104) follow.
Now, from Eq. (92) for k = nT + 2 and Eq. (104), we
obtain Eqs. (105,106).

Note that without Corollary F.1, Fnc−13(2nT )−2 in Eq. (106) would
be meaningless and wrong. From Eq. (106) and nT > 1, we
have

cnT+3 + c1 = 3(2nT )− 1 ∈ D(Fn1 )
≤nT

. (107)

Also, from Eq. (104), 3(2nT )− 1 ∈ D(FnT+2
1 )
≤nT

, i.e.,

∃Yo ⊆ FnT+2
1 3 |Yo| ≤ nT ,

∑
ci

i∈Yo

= 3(2nT )− 1. (108)

Equations (107,108) imply that cnT+3 + c1 =
∑
ci

i∈Yo
, and since

|D(Fn1 )
≤nT

|S = |D(Fn1 )
≤nT

|, it must hold that {1, nT + 3} = Yo,

while according to Eq. (108), Yo ⊆ FnT+2
1 . The assertion

follows by contradiction. �
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