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Abstract—This paper maximizes the expected profits of a
cyber-physical social system (CPSS) for flexible passenger trans-
portation. In the CPSS-based transportation system users can
choose from an assortment of travel offers. When shared rides
are proposed, the users have a great impact on the system
performance, since every passenger of the proposed shared ride
is able to choose another travel option or to reject it. In the worst
case, the rejections result in a not profitable transportation of the
passengers accepting the shared ride. To draw attention to this
problem, a mixed integer problem considering the choices of the
customers is formulated and applied to synthetic data. At last,
a heuristic based on the idea of forming best pairs is proposed
and evaluated.

I. INTRODUCTION

Many transportation systems act as conventional cyber phys-
ical systems (CPS), since they do not consider human dynam-
ics. For example, they assign only one travel option to each
user and assume that the travel option is always accepted [1].
In particular, most mathematical problem formulations follow
this assumption [2]. Some literature examples even assume
that customers accept a frequent change of vehicles on their
travel [3].
Following the ideas in [4] and [5] we aim at integrating
humans substantially into the system. In this paper, we there-
fore optimize the assortments of travel offers in a flexible
transportation system, by maximizing the expected system
profits regarding the probability distribution of individual user
choices.
In flexible transportation users can choose from an assortment
of travel offers. For example, a single mode ride and a shared
mode ride can be proposed by the system. Since the choice
of each user has an impact on the routing of the vehicles,
the system should consider the probability distribution of the
user’s travel mode decision. The example in Figure 1 shows
that the consideration of the probability distribution of the
decisions is crucial, since the decisions can heavily affect the
performance of the system.
We assume that each edge traversal leads to costs of one and
the price of a transport equals two times the shortest path costs
from a requested pick up location to requested destination
location. In the dotted red solution the rejection of offers is
not considered. Since profit is maximized, the system decides
to offer customer one and two a shared ride with a profit of
3 = 2 · sp(s1, d1) + 2 · sp(s2, d2)− sp(sf1 , s1)− sp(s1, s2)−

Fig. 1. In dotted red a shortest path route of vehicle f1 starting at location
sf1 and servicing customer 1 and 2 with pick up location s1 and s2 and
destination location d1 and d2, respectively. The shortest path route servicing
customer 3 is depicted by the dashed green line.

sp(s2, d1) − sp(d1, d2), where sp(v, u) provides the costs of
the shortest path from node v to u. However, if we assume that
customers reject the offers with probability 0.5, the expected
profit of the system is −0.5 = 3 · 0.52 − 2 · 0.52 − 3 · 0.52,
since the system makes a profit of 3 when both accept, a loss
of 2 when only customer one accepts and a loss of 3 when
only customer two accepts.
If the probability distributions of the customer’s decisions
are considered the system would offer only customer 3 a
single mode ride with an expected profit of 0.5 = 1 · 0.5 =
(2 · sp(s3, d3)− sp(sf1 , s3)− sp(s3, d3)) · 0.5 instead (dashed
green solution).
In contrast to solutions not considering the choices of cus-
tomers, our solution generates shared mode rides with higher
expected profits and therefore performs better in the long run.
Surprisingly, there is no literature considering the rejection of
shared rides to our knowledge. Most flexible transportation
systems offer services from different companies like train and
taxi companies [9] or independent travel modes like walk,
bike, car, car-pool, and transit [10].
To the best of our knowledge, there is only one literature ex-
ample that considers flexible transportation within one system
[11]. The authors propose to maximize the expected utility,
given the detailed preference of each customer. However, the



part wise rejection of shared rides is not handled since each
customer request is considered sequentially.
In contrast, we generate the assortments considering the
choices of all customers simultaneously, which makes the
application more practical, as users need time to choose a
travel option.
In general, a change from pure system optimization to cus-
tomer preference optimization can be found in transportation
system literature. Instead of just minimizing costs or maxi-
mizing overall system profits, the objectives of the users are
considered.
The authors of [6] maximize the overall user satisfaction
considering attributes like driving time and time window
violation. To each attribute a weight is assigned to reflect its
importance. In [7], machine learning is used to capture the
preferences considering travel cost, travel time, number of co-
passengers, user’s seat, working status and user’s demographic
information.
The authors of [8] address co-passenger preferences in taxi
sharing. Their system continuously updates a ride sharing
social network and assigns greater detours to customers that
know each other.
The remainder of this paper is organized as follows. After
describing the CPSS for flexible transportation in Section II,
the assortment generation problem is modeled as a mathemat-
ical optimization problem in Section III. For this problem a
heuristic based on the formation of best pairs is proposed in
Section IV. In Section V the solutions are applied to synthetic
data and compared to each other. In particular, the solution not
considering the rejection of offers is evaluated regarding the
expected profits. At last, the paper is concluded and further
research ideas are given.

II. CPSS DESCRIPTION

Our CPSS consists of customers requesting a transport (so-
cial component), a fleet of vehicles transporting the customers
(physical component) and a fleet management optimizing the
vehicle customer assignments and vehicle routes (cyber com-
ponent). The social component, which represents the humans
using the system, is significant in flexible transportation, since
the customers can choose from an assortment of travel offers
after optimization.
In more detail, customers request a transport by sending their
pick up location, destination location and pick up time to the
system. The system then calculates an assortment of travel
options for each customer, considering their preferences and
the probability distribution of their decision. The customer
preferences are either set by the customer or learned by the
system. For example, reinforcement learning can be used to
determine the preferences and the probability distribution, as
the assortment and the decision of a customer can be used as
training data, while the system is in operation. Each customer
then chooses a travel option from the assortment, which can
be seen as a booking. At last, the fleet management sends
the optimized routes to the vehicles. In Figure 2, the system
components and the interactions are shown.

Fig. 2. System components and interactions.

III. PROBLEM FORMULATION

We first formulate the mathematical problem of offering
every customer at most one shared ride and at most one single
mode ride maximizing the system profit, without considering
the rejection of offers.
Let F = {f1, . . . , fm} be the set containing the fleet of homo-
geneous vehicles with k available seats and C = {1, . . . , n}
the customer set, each requesting a transport ri = (si, di, ti)
with pick up location si, destination location di and pick up
time ti, i = 1, . . . , n. The problem can be extended to time
windows, however cycles have to be prevented then. When the
time windows are smaller than the duration of the trips, the
formulation contains no cycles. Otherwise a preprocessing pro-
cedure, that breaks cycles, or sub-tour elimination constraints
has to be added [12].
The time feasible shared rides are collected in the set S =
{S | |S| ≤ k, S ∈ P(C), S is time feasible}, where P(C) is
the power set containing all subsets of C. An offer S in the
offer set S is time feasible, if all customers i ∈ S can be picked
up at their pick up time and serviced by only one vehicle. For
each S ∈ S we determine the cost minimal pick up and drop
off sequence P ∗S = (v∗1 , . . . , v

∗
2·|S|) with v∗j ∈ {si, di | i ∈ S}.

Let sp(v, u) provide the cost of the shortest path from node
v to u, then the cost of a feasible sequence P = (v1, . . . , vl)
is given by sp(P ) =

∑l−1
i=1 sp(vi, vi+1). Since the number of

customers in an offer S is bounded by the capacity k of the
vehicles, the sequence with minimal cost can be calculated
by evaluating all feasible sequences in reasonable time. For
every cost minimal sequences P ∗S = (s∗S , . . . , d

∗
S), we create a

request rS = (s∗S , d
∗
S , t
∗
S), where s∗S is the location of the first

pick up, d∗S the location of the last drop off and t∗S the pick
up time of the customer picked up first in the cost minimal
sequence.
In order to formulate the integer problem based on network
flows like in [12], we define decision variables yf,S with
f ∈ F and S ∈ S that represent the ride of vehicle f from its
starting location to offer S and decision variables xS′,S that
represent the ride from offer S′ ∈ S to offer S ∈ S . Further,
we define the functions

p : S → Z+, c : (F ∪ S)× S → Z+, τ : (F ∪ S)× S → Z+,

where p contains the profit of an offer S ∈ S, which is equal
to the sum of prices for each customer i ∈ S minus the
transportation costs of the shared ride. The cost and duration
of a ride from a vehicle’s starting location or offer destination
location to the starting location of the offer serviced next,



is assigned by c and τ , respectively. With these notations,
following IP can be used to calculate the optimal profit,
without considering the rejection of offers.

max
∑

f∈F,S∈S
(p(S)− c(f, S)) · yf,S (1)

+
∑

S,S′∈S
(p(S)− c(S′, S)) · xS′,S

s.t.
∑
S∈S

yf,S ≤ 1 ∀ f ∈ F (2)

∑
S∈S

xS′,S ≤
∑
f∈F

yf,S′ +
∑
S∈S

xS,S′ ∀ S′ ∈ S (3)

∑
f∈F

yf,{i} +
∑
S∈S

xS,{i} ≤ 1 ∀ i ∈ C (4)

∑
S:i∈S,|S|>1

∑
f∈F

yf,S +
∑

S:i∈S,|S|>1

∑
S′∈S

xS′,S ≤ 1 (5)

∀ i ∈ C

τ(S′, S) · xS′,S −
∑
S∈S

tS · (1− xS′,S) (6)

≤ tS − tS′ ∀ S, S′ ∈ S

τ(f, S) · yf,S ≤ tS ∀ S ∈ S,∀ f ∈ F (7)

yf,S ∈ {0, 1} ∀ f ∈ F , ∀ S ∈ S (8)

xS′,S ∈ {0, 1} ∀ S′, S ∈ S (9)

As we subtract the cost to drive to an offer from the profits
of each offer serviced, the objective function maximizes the
overall system profit. Feasible vehicle routes are ensured by
allowing each vehicle to start with at most one offer only (2)
and the flow conservation constraints in (3). The constraints
in (4) and (5) bound the number of proposed single mode
respectively shared mode rides by one for each customer. In
order to guarantee the requested pick up times the constraints
(6) and (7) are added. At last the decision variables are
constrained to be binary.
In order to consider the choices of the customers, the objective
function is adapted as follows:

max
∑

f∈F,S∈S

∑
T∈P(S)

(p(T )− c(f, T )) · yf,S · Pr(T |S)

+
∑

S′∈S,S∈S

∑
T∈P(S)

∑
T ′∈P(S′)

(p(T )− c(T ′, T )) · xS′,S

· Pr(T |S) · Pr(T ′|S′),

where Pr(T |S) =
∏
i∈T

Pr(i, S) ·
∏

i∈S\T
(1 − Pr(i, S)) and

Pr(i, S) equal to the probability that customer i chooses
offer S. Note, that not only the profit is reduced, because
of rejections. Since the last drop off location and the first
pick up location of offers may change after rejections, the
expected costs to drive to an offer have to be adapted, too.

Unfortunately, the formulation does not consider the expected
riding costs to drive to an offer, when all customers of the offer,
planned to be serviced before, reject the ride. However, we
calculate the actual expected costs of the optimized solutions
in our simulation afterwards.

IV. A BEST-PAIR HEURISTIC GENERATING ATTRACTIVE
SHARED RIDE OFFERS

In the mixed integer program formulations we generate all
feasible shared mode offers, which does not scale with the
number of requests and is therefore impractical in real appli-
cation. In more detail, the formulation has O(m ·

(
n
k

)
+
(
n
k

)2
)

decision variables and constraints, if the number of available
seats k is smaller than n

2 , since in general all
∑k

i=1

(
n
i

)
shared

mode offers S ∈ P(C) with cardinality smaller than k are
considered. For this reason, we propose a heuristic generating
only O(n) attractive shared ride offers, thus obtaining only
O(m ·n+n2) constraints and decision variables, which makes
the formulation efficient.
Since our heuristic iteratively forms best pairs considering the
breakage of shared rides, we call it expected best-pair heuris-
tic. The application of a similar heuristic to the platooning
problem can be found in [13].
For each pair of requests with summed cardinality smaller than
k we calculate the expected cost savings of sharing a ride. The
pair with highest expected cost savings is then merged to one
request, added to the offer set S and considered in further best
pair iterations. Since the number of request to merge decreases
by one after each merging process, O(n) shared mode offers
are generated. The following function is used to calculate the
expected cost savings:

s : S × S → Z+

(S, T )→
∑

U∈P(S∪T )

((∑
i∈U

sp(si, di)
)
− sp(P ∗U )

)
·Pr(U |(S∪T ))

−
∑

U∈P(S)

((∑
i∈U

sp(si, di)
)
− sp(P ∗U )

)
· Pr(U |S)

−
∑

U∈P(T )

((∑
i∈U

sp(si, di)
)
− sp(P ∗U )

)
· Pr(U |T ),

where sp(P ∗U ) with U ∈ S is equal to the minimal cost of
the time feasible pick up and drop off sequence.
In the scenario of Figure 1 with edge costs equal to one and
rejection probability of 0.5, request one and two form the first
best pair, since

s({1}, {2}) = 0.5 = (6− 4) · 0.52 − (3− 3) · 0.52 − 0 · 0.52

> s({1}, {3}) = −1.75 = (5− 12) · 0.52 + 0 · 0.52 + 0 · 0.52

> s({2}, {3}) = −2 = (5− 13) · 0.52 + 0 · 0.52 + 0 · 0.52

No further requests are merged, since:

0 > s({1, 2}, {3}) = −2 = (8− 12) · 0.53 + (5− 12) · 0.53

+ (5− 12) · 0.53 + (6− 4) · 0.53 − (6− 4) · 0.52.



Price coefficient
1.1 1.2 1.3 1.4 1.5 1.6

supply
demand

1
5 (1.83,1.51,1.05) (2.89,2.52,2.29) (4.31,3.78,3.78) (5.85,5.01,5.28) (7.57,6.38,7.1) (9.77,8.27,9.36)

1
2 (2.55,2.28,1.58) (4.49,4.17,3.74) (6.5,5.84,5.64) (9.15,8.34,8.37) (11.95,11.13,11.24) (14.09,12.95,13.44)

1 (3.63,3.35,2.92) (5.92,5.60,5.1) (8.95,8.43,8.14) (12.16,11.5,11.15) (15.49,14.39,14.39) (19.39,18.19,18.41)

2 (4.78,4.53,4) (7.75,7.44,6.91) (11.55,11.1,10.6) (15.39,14.70,14.4) (19.68,18.6,18.61) (23.76,22.6,22.57)

Fig. 3. Table and graph with average expected profits of the optimal solution (green), expected best-pair heuristic (red) and the optimal solution not considering
the choices (yellow) for different travel prices and supply/demand ratios. The simulation was run 100 times for each case.

V. SIMULATION AND RESULTS

As the aim of the paper is to show how the expected
profits of a CPSS for flexible passenger transportation can
be improved, we simulate the problem with ten requests on a
simple routing graph depicted in Figure 1 with time and cost
of one for each edge traversal. The pick up, destination and
vehicle starting locations are chosen uniformly on the routing
graph and the pick up time is chosen uniformly in [0,20].
Further, we assume that each customer chooses one offer with
a probability of 0.5 and the capacity of a vehicle is 4. In
Figure 3 the average expected profits of the optimal solution,
the expected best pair heuristic and the optimal solution
not considering the choices of the customers is depicted for
different transportation prices and supply/demand ratios. The
prices are differentiated by multiplying the shortest path costs
from the pick up location to the destination location with
different coefficients. Figure 3 indicates that in the case of low
prices the consideration of customer choices yields to much
higher profits. When demand is higher than supply and prices
are low, the solution considering the choices has an average
profit increase of at least 24% compared to the optimal solution
not considering the choices. In the case of supply

demand = 1
5 and price

coefficient=1.1 the profit increase is even greater than 74%.
One explanation of such a high profit increase is that lower
prices near the driving costs make the system more vulnerable
to the breakage of shared rides. Further, only few single mode
rides are proposed. When supply is greater than the demand,
the system proposes many single mode rides. For this reason
the profit increase gets smaller. In particular, the table shows

that the algorithm without considering the rejection of offers
is near optimal, when demand is lower than the supply and
prices are high.
Overall the consideration of the choices of customers is
imperative, since transportation systems compete with each
other and have to offer small prices to be attractive. Further,
they try to have a supply near the demand to reduce investment
costs.
In the case of low prices the expected best pair heuristic
outperforms the algorithm that does not consider the choices
of customers. When the price coefficient is higher than 1.4 the
heuristic performs worse. However, the heuristic computes a
solution fast, since the offer set is small.
Since the accuracy of the expected best pair heuristic is good,
when prices are low and supply equals demand, we expect
good results in practical applications. In the case of high prices
the application of a heuristic not considering the choices is
satisfactory.

VI. CONCLUSION AND OUTLOOK

We introduced a new CPSS-based flexible transportation
problem and solved it by a MIP formulation. For practical
applications a heuristic solving the problem in reasonable
time with good accuracy in the case of low prices, was
proposed. The simulation shows that the consideration of user
choices has great impact on the system performance. Since
transportation companies try to adapt supply to demand and
have to choose prices near the costs as they compete with
each other, we expect that the consideration of choices has



also great impact on the performance of flexible transportation
services in real application.
In future, we want to formulate the corresponding online
problem and to develop re-optimizing methods. We expect that
the consideration of customer choices is also important in the
online case allowing re-optimization, since the offered assort-
ments with travel time proposals shrink the re-optimization
possibilities.
Possibly, machine learning can be used to learn the probability
distribution of the customer’s decisions, when the flexible
transportation system is in operation. Like the authors in
[11], we believe that the probability distribution depends also
on the actual characteristics of offered rides and individual
preferences.
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