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Abstract

Internet of Things (IoT) is a promising paradigm to connect massive number of devices in future wireless
communications while satisfying various quality of service (QoS) requirements. In this paper, we consider a QoS-
constrained IoT system operating with finite blocklength (FBL) codes to support low latency communications. Two
data arrival models are considered, namely, constant-rate arrival and ON-OFF discrete-time Markov arrival. The
throughput performance is studied for both arrival models under statistical queuing constraints and deadline limits.
For the scenario with instantaneous channel state information (CSI), we derive the QoS-constrained throughput
expressions for both arrival models. Subsequently, an instantaneous-CSI-driven optimal power control algorithm is
proposed to maximize the throughput, while guaranteeing a certain reliability target. In addition, we consider
a scenario with only average CSI being available at the transmitter and propose to apply hybrid automatic
repeat request (HARQ) schemes to improve the FBL performance. The decoding error probability and the outage
probability are first characterized, following which the distribution of transmission period is derived. Furthermore,
the throughput expressions are provided for both types of arrivals. Via numerical analysis, the impact of error
probability, fixed transmission rate, coding blocklength, and QoS constraints on the throughput is studied.

Index Terms

Finite blocklength, HARQ, Internet of Things (IoT), Markov arrivals, power control, QoS.

I. INTRODUCTION

FUTURE wireless networks are expected to support high speed, low-latency and high reliability
transmissions while connecting a massive number of smart devices, e.g., enabling the Internet of

Things (IoT) [2], [3]. In particular, designers and researchers of IoT systems are increasingly interested
in having wireless links supporting delay-sensitive data traffic generated in applications such as industrial
control applications, autonomous driving, cyber-physical systems, E-health, and haptic feedback in virtual
and augmented reality. The common features of these IoT applications [5]–[8] is that the transmission
reliability is usually a concern, and more importantly that due to low latency constraints, the coding
blocklengths for wireless transmissions are quite short.

Moreover, various IoT applications, such as streaming multimedia [9], augmented reality (AR) and
online gaming, have certain quality of service (QoS) requirements in order to avoid excessive buffer
overflows, data packet drops, and violations of delay constraint. For such delay sensitive applications,
in [10] the effective capacity formulation was developed to characterize the capacity/throughput under
statistical queuing constraints in the form of limitations on the asymptotic behavior of the buffer overflow
probability. In particular, a large-deviations setting is considered, in which queueing constraints require
the buffer overflow probability to decay exponentially fast for sufficiently large buffer thresholds.

Facilitated by the effective capacity model, many wireless communication schemes have been proposed
recently to improve the QoS performance under certain latency constraints. In general, these techniques
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can be roughly considered as being motivated by the following two strategies. On the one hand, when
the instantaneous channel state information (CSI) is available at the transmitter, optimal scheduling and
resource allocation schemes are proposed to improve the QoS-constrained performance (e.g., effective
capacity) according to the CSI. For instance, QoS-driven optimal power control policies are proposed
for broadcast channels [11] and for multiple-access channels [12]. Under certain QoS constraints, the
authors in [13] study the energy-efficient power control for 5G cellular networks. In addition, a joint
power allocation and framework design is presented in [14] to maximize the effective capacity. In order
to satisfy the QoS requirements, the optimal power allocation schemes are proposed for a multi-user
network in [16] and a relay network [17]. More recently, the QoS-constrained resource allocation designs
are introduced for a downlink multiple user network [18] and a multi-user network with device-to-device
communications [19]. Moreover, for a QoS-constrained non-orthogonal multiple access network, a sub-
optimal power control policy is proposed in [20].

On the other hand, when instantaneous CSI is not available at the transmitter, relatively more conser-
vative approaches, e.g., reducing packet size to improve the reliability or shortening blocklength to allow
more retransmissions, are generally preferred as they are expected to be more reliable. One promising
approach is to apply automatic repeat request (ARQ) scheme, which is well-known as one of the key
performance enhancement techniques for wireless transmissions systems without instantaneous CSI at
the transmitter. For such systems, by retransmitting the erroneously decoded packets, ARQ schemes are
able to improve the reliability as well as to adapt the average transmission data rate to the time-varying
channel qualities. By combining the forward error correction mechanisms with ARQ, hybrid ARQ (HARQ)
protocols are proposed, which can achieve higher reliability performance [21]. In particular, when the
erroneously decoded packets are combined with incremental redundancy (IR) after each retransmission
in HARQ, these HARQ schemes are called HARQ-IR, under which the decoding error probability is
decreasing in the number of retransmissions [22], [23]. It should be pointed out that it is challenging
to characterize the QoS-constrained performance of HARQ schemes due to their inherent retransmission
process. With this motivation, the effective capacity of HARQ-IR have been derived for a system with
reliability constraints [24] and for a system with a recurrence-relation retransmission approach [25].

However, in previous works addressing either power control or HARQ under queuing constraints, it was
generally assumed that the instantaneous transmission data rates were given by the Shannon capacity, which
is only true when the code blocklengths grow to be infinite long, i.e., so called the infinite blocklength
(IBL) regime. Unfortunately, in a practical system the codes can only have finite blocklengths (FBL).
In particular, for a QoS-constrained IoT network, the coding blocklengths are required to be quite short
to satisfy the delay deadlines and queuing constraints. Hence, it is more essential to study the FBL
performance while explicitly taking into account decoding error probabilities in the analysis of the QoS-
constrained performance. This motivated us to leverage recent advances in the characterization of coding
rates in the FBL regime [26]–[28], and study the FBL throughput performance of both instantaneous-
CSI-driven power control and non-CSI-based HARQ-IR schemes, while all transmissions are subject to
statistical queuing constraints at the transmitter buffer1. Moreover, in related works which investigating the
effective capacity of either power control or HARQ-IR, it is generally assume that the data arrives at the
transmitter with a constant rate. However, in addition to the constant arrivals, the randomly time-varying
arrivals also need to be addressed (at least) for certain traffic types in IoT networks [32]. For instance,
the data traffic can be modeled as an ON-OFF process in non-continuous sensor feedback/report, and
the variable bit-rate traffic (e.g., video streams) is statistically characterized as autoregressive, Markovian,
or Markov-modulated processes [33]. Therefore, in this work we also extend our throughput analysis on
both instantaneous-CSI-driven power control and non-CSI-based HARQ-IR to a scenario with data arrivals

1It should be mentioned that most existing studies on FBL networks are aiming at characterizing/improving the physical-layer
performances [29], [30], i.e., throughput and reliability. Nevertheless, a joint packet dropping and resource allocation policy has recently
been proposed in the FBL regime to minimize the transmit power under delay and reliability constraints [31]. However, to the best of our
knowledge, it is still an open problem to address the QoS-constrained throughput levels in the presence of constant and dynamic data arrivals
(at the transmitter) in the FBL regime under instantaneous-CSI-driven and non-CSI-based transmission policies.
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being modeled as ON-OFF discrete-time Markov processes.
The rest of the paper is organized as follows. In Section II, we first describe our system model.

Subsequently, we introduce the QoS-constrained throughput which is the performance metric considered
in this work, and then provide the problem statements addressed in the succeeding sections. We present
our main results in Sections III through V. In particular, we analyze the instantaneous-CSI-driven optimal
power control in Section III and also study the corresponding QoS-constrained throughput while assuming
a constant data arrival source. In Section IV, we investigate the performance of the HARQ-IR in the
absence of instantaneous CSI at the transmitter and again identify the QoS-constrained throughput.
Section V extends the results in the preceding sections to a system with a random data arrival source.
Finally, numerical results are provided in Section VI and we conclude our analysis in Section VII.

II. PRELIMINARIES

In this section, we describe the interested reliable and low-latency IoT system and introduce prelimi-
naries on statistical queuing constraints, and QoS-constrained throughput metrics.
A. System Description

Fig. 1. An example of the considred system.

As shown in Figure 1, we consider a simple wireless IoT network with a buffered transmitter and a
receiver. Data packets arrived at the transmitter are initially stored in a buffer waiting for being transmitted
to the receiver, satisfying certain queuing constraints. The channel is assumed to experience block flat-
fading. In other words, the channel fading stays constant within a block of l symbols, i.e., the code
bocklength is assumed to be shorter than the channel coherence time, which matches with the low-latency
requirements of IoT applications. In the ith time block, the received signal at the receiver is given by:

yi = hixi + ni , (1)

where i = 1, 2, . . . . In addition, xi and yi are signal vectors of length l, representing the transmitted and
received signals, respectively. hi is the channel fading coefficient in the ith block. ni is the noise vector,
which has independent and identically distributed zero-mean Gaussian components, each with variance
N0. The channel gain in the ith time block is denoted by zi = |hi|2. In addition, the channel gain in each
block is assumed to have the probability density function fPDF (z). Moreover, denote by ptx the per symbol
transmit power, i.e., ptx = E{‖xi‖2}/l. Therefore, the signal-to-noise ratio (SNR) at the transmitter can
be obtained by SNR = ptx

N0
.

B. Statistical Queuing Constraints and QoS-Constrained Throughput
Recall that in this work the transmitter is assumed to operate under a queuing constraint. According to

[10], this requires the buffer overflow probability to decay exponentially fast, i.e.,

Pr{Q ≥ q} ≈ ςe−θq, (2)

for a sufficiently large overflow threshold q, where Q is the stationary queue length and ς = Pr{Q > 0} is
the probability that the buffer is not empty. In addition, θ is so-called the QoS exponent. More precisely,
θ is defined in [34] by 2

θ = lim
q→∞

− log Pr{Q ≥ q}
q

. (3)

2In the paper, we use logarithm expressed without a base, i.e., log(·), to represent the natural logarithm loge(·).
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Note that θ actually controls the exponential decay rate of the buffer overflow probability. In particular,
according to (2), it can be noticed that a higher value of θ indicates a stricter limitation on the buffer
overflow probability, which results in a more stringent QoS constraint. On the contrary, a small θ represents
a relatively looser QoS constraint.

Note that the system operates in a time-slotted fashion, where time is divided into blocks with lengths
of l symbols. A certain amount of data is transmitted in each block, during which we also potentially
have new data arrivals into the transmitter buffer. We denote the instantaneous arrival rates (bits/block) in
the arrival process by ai and the departure rates (bits/block) in the departure process by ci, respectively.
According to the effective bandwidth [34] and effective capacity [10] formulations, the data arrival and
departure processes at the buffer should satisfy the steady-state condition, i.e., the following equality holds

Λa(θ) + Λc(−θ) = 0, (4)

where Λs(θ) = limt→∞
1
t

loge E{eθ
∑t
i=1 si} is the so-called asymptotic logarithmic moment generating

function (LMGF) of the random process si. Equation (4) allows us to determine the average arrival rates
for different departure and arrival models by formulating Λa(θ) and Λc(−θ) and substituting them into
(4).

Under a constant arrival model, we have ai = la (bits/block) for all i, where a is the constant rate in
bits/symbol and l is the blocklength. Clearly, it holds

Λa(θ) = laθ. (5)

Hence, according to (4), we have

la = −1

θ
Λc(−θ). (6)

In particular, the right side of (6) is so-called the effective capacity (in bits/block) [10], denoted by CE .
The effective capacity characterize the maximum constant arrival rate that can be supported by the time-
varying wireless transmission rates while satisfying the statistical queuing constraint in (2). When the
arrival rate is random, the computation of the system throughput is more complicated. Generally, it is
required to formulate the LMGF of the arrival process as a function of the average arrival rate, and then
obtain the throughput via solving Equation (4).

C. Problem statements
In this work, we study the throughput of low-latency IoT communication systems operating with delay

QoS constraints and finite blocklength codes. Hence, we consider both queueing delays (via the QoS
exponent θ) and the transmission delay (via the use of finite blocklength codes). In particular, we analyze
the low-latency throughput in two scenarios with different CSI assumptions. First, we consider a scenario
in which the instantaneous CSI is assumed to be available at the transmitter. In this setting, we apply
an optimal power control policy at the transmitter to maximize the QoS-constrained throughput under
reliability constraints.

Secondly, we consider a scenario in which no transmitter CSI is assumed to be available and the
transmitter sends the data at fixed rates. To guarantee the QoS of transmissions under this no instantaneous
CSI scenario, we employ the HARQ-IR scheme and study the corresponding low-latency throughput
achieved under delay QoS constraints with finite blocklength codes.

Moreover, extending our initial analysis assuming a constant data arrival source, we also address the
QoS performance, considering a random data arrival source.

III. INSTANTANEOUS-CSI-DRIVEN POWER CONTROL WITH CONSTANT DATA ARRIVAL

In an additive white Gaussian noise (AWGN) channel, the normal approximation of the coding rate r (in
bits per channel use) of transmission is derived in [26], [27]. Later on, this approximation is improved to
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become tighter in [28], where the third-order term of the normal approximation is derived. In particular,
with error probability ν, transmitted signal-to-noise ratio SNR, channel gain z and blocklength l, the
coding rate is shown to have the following asymptotic expression [28]:

r(zSNR, ν) = log2 (1+zSNR)

−

√
zSNR(zSNR+2)

l(zSNR+1)2 Q−1 (ν) log2e+
log l

l
+
o(1)

l
, (7)

where Q (x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function.
Note that we consider a scenario with a fading channel, i.e., the channel quality varies over time. As

the CSI is available, optimal power control schemes can be applied to maximize the QoS-constrained
FBL throughput, given by [41]

CE = − 1

θl
log
{
Ez
[
e
−θlr(z, ptx

N0
)
(1− ν) + ν

]}
. (8)

Obviously, for a given ν, CE is influenced by {ptx}. Our aim is to optimally allocate power over
time/channel qualities to maximize the above throughput, while guaranteeing a target error probability ν,
where ν is within a range of practical interest. Moreover, we consider the practical assumption that IoT
applications generally require guarantees for a basic reliable connection/transmission as long as the channel
state is not extremely bad, i.e., z ≥ zmin. This requirement in terms of SNR is given by γ = ptxz

N0
≥ γth ≥ 0

dB, while the equivalent requirement in terms of coding rate is r ≥ r (γth, ν). On the other hand, as the
channel has a random behavior, it is possible that zi ≤ zmin. In this case, we simply skip this transmission,
i.e., allocate zero power to the transmission in this fading block.

Therefore, the objective of the power control is to maximize the throughput by optimally allocating
power over frames (time), while satisfying the average (over time) power constraint, i.e., Ei {ptx} =

Ez {ptx} ≤ pave. Hence, the optimal power level p∗i in the ith block depends both on the realization of
the instantaneous channel gain zi and its distribution, i.e., fPDF (z). Based on the above analysis, the
optimization problem of power control (i.e., power allocation across time) in the presence of constant
arrivals is stated as follows:

max
ptx∈Ψ

CE

s.t. Ez {ptx} ≤ pave,
(9)

where Ψ =

{
ptx≥N0γth

z
, if z≥zmin,

ptx =0, if z<zmin,
is the feasible set of ptx. Then, we have the following result for

Problem (9).

Theorem 1. Problem (9) is strictly convex when the blocklength and the target error probability are
within practical interest, i.e., l ≥ 100, ν ≥ 10−24.

Proof: As the constraint is a linear function of the transmission power, Theorem 1 holds if CE is
concave in ptx in the feasible set Ψ. In the following, we prove this concavity by showing ∂2CE

∂p2tx
≤ 0,

∀ptx ∈ Ψ. According to (8), we have

∂CE

∂ptx

=
∂CE

∂r

∂r

∂SNR

∂SNR

∂ptx

=
∂CE

∂r

∂r

∂SNR
· 1

N0

, (10)

∂2CE

∂p2
tx

=
1

N2
0

∂2CE

∂2r

(
∂r

∂SNR

)2
+

1

N2
0

∂CE

∂r

∂2r

∂SNR2
. (11)
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According to (8), we also have

∂CE

∂r
=

le−θlr(1− ν)

Ez[e−θlr(1− ν) + ν]
≥ 0, (12)

∂2CE

∂r2
=
−θl2e−θlr(1− ν)ν

Ez[e−θlr(1− ν) + ν]2
≤ 0. (13)

Hence, for ptx ∈ Ψ, ∂2CE

∂p2tx
≤ 0 holds if ∂2CE

∂SNR2 ≤ 0.

∂2r

∂SNR2
=

z2 log e

(1 + zSNR)3 {φ− (1 + zSNR)} , (14)

where φ (zSNR) = A

2(z2SNR2+2zSNR)
3
2

+ 3A√
z2SNR2+2zSNR

and A = Q−1(ν)
√

1
l
. When ν≥0.5, we have A≤0.

Then, ∂2r
∂SNR2<0. On the other hand, when ν <0.5, ∂2r

∂SNR2 is increasing in A and therefore decreasing in
ν and l. For an extreme scenario where l = 100, ν = 10−24, we have A = 1.0199. Then, ∂2r

∂SNR2 ≤ 0 if
φ (zSNR) ≤ 0. Obviously, φ (zSNR) is decreasing in zSNR for A > 0. In particular, we have φ (1) = −0.0372
for A = 1.0199. Hence, φ (zSNR) < 0 for zSNR ≥ 1 = 0 dB. Note that the feasible set of ptx definitely
satisfies zSNR ≥ 1 = 0 dB, thus Problem (9) is a strictly convex optimization problem3.

According to Theorem 1, A similar problem in the IBL regime has been addressed in [35], Problem (9)
can be solved via the Lagrange dual method4. Denote by λ the Lagrange multiplier associated with the
average power constraint. The partial Lagrange dual function of Problem (9) is given by

L = −CE + λEz {ptx − pave} . (15)

To obtain the dual optimal, we let ∂L
∂ptx(z)

= 0. Let us introduce a function

g = e−θCE = Ez
{
e−θlr(1− ν) + ν

}
, (16)

and express CE = −1
θ

log g. Then, ∂L
∂ptx(z)

is given by

∂L

∂ptx(z)
=ϕ

(
1− A√

a
(1−a)

)
(1− a)

ηl+1
2 eηlA

√
a−λ=0, (17)

where ϕ= z(1−ν)ηl−η

gθN0
fPDF (z), η= θ

log 2
and a=1−

(
1+ ptxz

N0

)−2

.

Since the dual problem is always convex, ∂L
∂ptx(z)

is monotonically increasing in ptx, and it is easy to
solve (17) within the feasible set Ψ, and determine λ and p∗tx. However, it should be pointed out that as
p∗tx and λ are generally interdependent on each other, it is unlikely to obtain a closed-form expression
for the optimal power control policy. But the optimal power control can be obtained numerically. In the
following, we propose an iterative algorithm for determining the optimal instantaneous transmit power
based on both the instantaneous channel gain and its distribution. The key idea of the algorithm is to first
initialize the values of λ and g, and obtain the corresponding ptx according to (17). Subsequently, we
update g based on the obtained ptx till g converges to a constant g◦. Finally, we keep updating λ till (17)

3We note that general formulations and conditions to establish the convexity of Problem (9) are provided above in the proof of Theorem
1, and these can be used to establish the range of zSNR values for given coding blocklength m and target error probability ν. Indeed,
we can easily show that for more practical scenarios, the concavity holds for even lower zSNR bounds: e.g., zSNR intervals in which
convexity is satisfied are i. [−3.1 dB,∞) for l = 100, ν = 10−10, ii. [−10.81dB,∞) for l = 200, ν = 10−10, iii. [−15.53dB,∞) for
l = 300, ν = 10−5.

4It should be pointed out that a similar problem has been addressed in [35] following the Shannon capacity, where the impact FBL is not
considered. More recently, the convexity in Theorem 1 has been stated in [36], by considering an approximated effective capacity. Hence, a
rigorous proof of the convexity of the effective capacity in the FBL regime with respect to the transmit power has not been pursued in this
study.
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Algorithm 1 for Optimal Power Control.
Determining the optimal power control policy

a) Given λ, g, obtain ptx according to (17).
b) According to (16), update g based on the PDF of z and the obtained ptx.
c) Based on the updated g, update ptx according to (17).
d) if the updated ptx is out of the feasible set, jump to Step k).
e) if g converges to a constant g◦

f) then Along with the obtained g◦, we have p◦tx = max{ptx,
γthN0

z
}, λ∗ = λ.

g) else go back to Step c).
h) Check if the obtained p◦tx satisfies the average power constraint.
i) if not satisfied with equality
j) then Update the value of λ and go back to Step a);
k) else We have obtained the optimal power control policy, including λ∗ and the converged g◦.

Instantaneous power control at ith block, i = 1, 2, ...
l) Substituting the instantaneous zi as well as λ∗ and g◦ to (17), the optimal power p∗tx is determined.

is satisfied. As the Problem (9) is strictly convex in the feasible set, the converged solution is optimal.
In particular, Algorithm 1 has two parts: In the first part, the optimal power allocation policy is fully

characterized by the optimal value λ∗ and the converged g◦. Following these characterizations, the optimal
power can be determined in the instantaneous power control (second) part, by simply plugging the instan-
taneous channel gain z, λ∗ and g◦ into (17) and solving it, which has very low computational complexity.
Note that the first part is only required to be computed once for a given channel distribution, while the
second part has to be processed for each instantaneous channel. Overall, computational complexity of
Algorithm 1 is low.

IV. THROUGHPUT WITH HARQ-IR IN THE PRESENCE OF CONSTANT DATA ARRIVALS

In this section, we assume that only the transmit SNR and the distribution of channel fading is known
at the source. Under this scenario, an efficient way to guarantee the QoS of transmissions is to let the
system employ HARQ-IR scheme. Recall that l is the blocklength of each codeword (equivalently the
length of each fading block). Under the constant data arrival model, the transmission rate is lR (bits/block)
at the transmitter, where R denotes the date rate in bits/symbol. We consider a deadline constraint ltot

in the HARQ to control the packet delay, i.e., the deadline constraint limits the maximum duration of a
transmission period as M time blocks, considering the costs of each blocklength and the corresponding
feedback. In particular, each data packet is encoded into M codeword blocks, while each blocklength is
l symbols. In each time block, a data packet via a codeword block is transmitted from the transmitter to
the receiver. If the receiver decodes it successfully, it reliably sends an acknowledgment (ACK) to the
transmitter via an error-free feedback link, and a new data packet will be sent in the next time block. On
the other hand, if the receiver fails to decode the data packet, a retransmission request is sent through the
feedback link, and another codeword block carrying the same data packet will be sent in the next time
block [21]. For simplicity, we assume that the ACK and the retransmission request have the same delay
cost of lo symbols. Hence, for a given deadline constraint ltot, M is limited by bltot/(l + lo)c, where b·c
is a floor function.

Note that the deadline constraint is considered. A transmission period is finished if the receiver decodes
the packet correctly or if the deadline is reached. Then, the transmitter move on the next transmission
period sending another data packet. When the deadline is reached while the packet is still has not been
decoded, i.e., decoding error of this packet occurs M times, an outage happens. The outdated packet is
dropped in such a case. We denote the random transmission period by T , i.e., 1 ≤ T ≤ M , and denote
by ε the outage probability.
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Pr{T = t}=


1− Ez {ν1} for t = 1,

Pr{T ≤ t} − Pr{T ≤ t− 1}=1− Ez {νt} − (1− Ez {νt−1})=Ez {νt−1} − Ez {νt} for 2 ≤ t ≤M − 1,

Ez {νM−1} for t = M.
(20)

For the departure process, the rate is instantaneous. When a transmission period is finished at the ith

block, the departure rate is given by ci = lR (bits/block), otherwise, ci = 0. It should be pointed out that
ci = lR holds also when the packet is dropped, as it also contribute to the departure rate in the queuing
analysis, i.e., the queue length is reduced no matter the packet is transmitted or dropped. The packet drop
probability is actually the outage probability, which is incorporated after solving the average arrival rate
from (4), and the throughput rth is given by the maximum average arrival rate ravg multiplied by (1− ε),
because only (1 − ε) fraction of the packets are received by the receiver, i.e., ε fraction of the packets
are discarded on average.

In the following, we study the outage probability of HARQ-IR and subsequently address the throughput
performance.

A. Outage Probability for HARQ-IR at Finite Blocklengths
When there is no instantaneous CSI to guide the system operation, an efficient way to guarantee the

reliability of transmissions is to let the system employ the HARQ-IR scheme. Recall that under the HARQ-
IR scheme, the receiver accumulates the received information in each transmission period. In particular, at
the end of the mth trial of the transmission period, in total m received codeword blocks has been combined
at the receiver for decoding the packet. From the perspective of achievable rate, this is actually equivalent
to decoding one codeword with m subblocks while each length of subblock is l symbols. According to
the FBL coding rate model in [26], the fixed transmission rate is given by

R =
m∑
i=1

log2 (1 + ziSNR) +
log(l)

l
+
o(1)

l

−

√√√√ m∑
i=1

(ziSNR + 2)ziSNR

l(ziSNR + 1)2
Q−1(ν) log2 e (18)

for the mth trial, where ν is the decoding error probability, l is the blocklength, and zi = |hi|2 is channel
gain. Based on (18), the decoding error probability of the mth trial/attempt of the packet transmission can
be expressed as

νm(z) = Q

∑m
i=1 log2 (1 + ziSNR) + log(ml)

l
−R

log2 e
√∑m

i=1
(2+ziSNR)ziSNR
l(ziSNR+1)2

 (19)

for given channel gains z = (z1, · · · , zm). Note that the duration of a transmission period is repreanted
by T . Hence, the probability mass function (pmf) of T is given in (20) at the top of the next page.

Recall that it is assumed that in the mth trial, if the receiver fail to decode the packet by using all these
m codeword blocks, this confirms it cannot decode the packet by only the first m − 1 trials. Thus, the
probability that the receiver correctly decodes a packet within t trials can be given by

Pr{T ≤ t} = 1− Ez {νt} . (21)

According to (20), when 2 ≤ t ≤M−1, T = t actually indicates that only the tth trial has been decoded
correctly and that the first t − 1 trials have finished and were unsuccessful. In addition, when T = M ,
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Fig. 2. Then relationship between R and the outage probability.

it indicates that the first M − 1 trials have failed, while the last attempt does influence the pmf due to
the fact that the deadline constraint forces the transmission period stop anyway after M trials. Recall that
when the decoding error of one packet occurs M times, outage happens. The outage probability is given
by

ε = Ez {νM} . (22)

We plot in Fig. 2 the impact of fixed transmission data rate R on the outage probabilities under different
deadline constraints M . In the figure, we set the blocklength to l = 100 and SNR to 0 dB. Clearly, as the
decoding error probability ν is increasing in R, a large R leads to a higher outage probability. In addition,
it is also observed that lower outage probabilities are obtained when M is relatively large (representing
a loose deadline constraint). Moreover, the figure also demonstrates that the fixed transmission rate R
can be numerically determined using (19) and (22) as long as a target decoding error probability ε and
deadline constraint M are specified.

B. Throughput of HARQ-IR with Constant-rate Arrivals
Under the constant-rate arrival assumption, for single transmission (without HARQ), the throughput (in

bits/symbol) is given by (1− ε) times the effective capacity (normalized by the blocklength l):

rth = (1− ε)CE(θ, SNR)/l = −1− ν
lθ

Λc(−θ). (23)

Then, we have the following proposition addressing the throughput of HARQ-IR

Proposition 1. Under constant-rate arrivals, with fixed transmission rate R (bits/symbol), given QoS
exponent θ and specified deadline constraint M , the throughput of HARQ-IR scheme is given by

rth = (1− ε)CE/l , (24)

where CE is the effective capacity (in bits/block), given by

CE = −1

θ
log (max {|β1|, · · · , |βM |}) , (25)

where {β1, · · · , βM} are the eigenvalues of the matrix A given in (26) at the top of the next page.

By applying Theorem 1 of reference [25] to the model considered in our work, Proposition 1 is verified.
Note that the packet drop is not considered in the model of [25]. Hence, to apply the theorem in our
model, the variable ν in [25] needs to be redefined as the number of packets leaving the queue in a
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A =


Pr{T = 1}e−θlR Pr{T = 2}e−θlR · · · Pr{T = M − 1}e−θlR Pr{T = M}e−θlR

1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 (26)

transmission period, which is always equal to 1 in our model due to the packet drop mechanism. In
Section VI, simulation results are provided to verify our effective capacity characterization.

V. FBL PERFORMANCE WITH ON-OFF DISCRETE-TIME MARKOV SOURCE

In this subsection, we analyze the throughput with finite blocklength codes when we have discrete-time
Markov sources, with only two states, namely, ON and OFF states. In particular, we derive the maximum
average arrival rate ravg that can be supported by the wireless transmissions under statistical queuing
constraints.

Under the discrete-time Markov model, the source keeps silent in the OFF state. On the other hand,
data arrivals with rate ai = lr (bits/block) in the ON state, in which r (bits/symbol) is the constant rate
in the ON state. Let us define states 1 and 2 as the OFF and ON states, respectively. The state transition
probability matrix of this Markov source is given by

G =

(
p11 p12

p21 p22

)
, (27)

where p11 is the probability of the source staying in the OFF state in the next time block, while p22 is the
probability of it staying in the ON state. In addition, p12 and p21 denote the probabilities that the source
changes to a different state in the next time block. According to the properties of Markov processes, the
probability of the ON state is given by

PON =
1− p11

2− p11 − p22

. (28)

Therefore, we can derive the average arrival rate (in bits/symbol) of this ON-OFF Markov source by

ravg = rPON = r
1− p11

2− p11 − p22

. (29)

Note that the departure process and arrival processes are independent, the effective capacity character-
izations in (8) and (25) are still valid for the random arrivals. Based on these two equations, the FBL
throughput with a discrete-time Markov source is characterized in the following theorem

Theorem 2. With the ON-OFF discrete-time Markov source, for given fixed transmission rate R (bits/symbol),
QoS exponent θ and specified deadline constraint M , the throughput of HARQ-IR scheme is given by

rth =
1− ε
l

PON
θ

log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
, (30)

where CE is the effective capacity given in (25).

Proof: According to [42] and (23), the LMGFs of the arrival process and the departure process at
the transmitter can be byΛa(θ)=loge

(
p11+p22elrθ+

√
(p11+p22elrθ)2−4(p11+p22−1)elrθ

2

)
Λc(−θ) = −θCE

. (31)
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Applying the characterizations in (31) into (4), we have

lr =
1

θ
log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
. (32)

Plugging the above equality into (29), the maximum average arrival rate (in bits/symbol) is obtained as

ravg =
PON
lθ

log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
. (33)

At the end of Section IV we have discussed that the throughput is given by (1−ε)ravg. Therefore, Theorem
2 is verified.

Following the same steps as in the proof of Theorem 2 above, we can also prove that when instantaneous
CSI is available at the transmitter and power control is employed, the throughput in the presence of an
ON-OFF discrete-time Markov source is given by

rth =
PON
lθ

log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
, (34)

where the effective capacity is now given by (8).
From (30) and (34), we can readily show that with ON-OFF discrete time Markov sources the throughput

achieved with either the instantaneous-CSI-driven power control or the HARQ-IR is an increasing in the
effective capacity CE , which can be quickly verified by checking the first order derivative of rth to CE .
Thus, the transmission parameters, including optimal power levels, fixed transmission rates r and outage
probability ε, which are optimal solutions maximizing the throughput for the constant-rate arrival models,
also optimize the throughput for the ON-OFF discrete time Markov arrival models.

The influence of the source burstiness was analyzed in [43], which showed that under queuing constraints
the source burstiness degrades the energy efficiency. A similar discussion can be applied to the scenarios
considered in our work. In particular, if the source remains in the ON state for a longer period, this
indicates that it is less bursty. In this case, a smaller instantaneous arrival rates r is introduced for the
fixed average arrival rate ravg. As a results, if different sources have the same ravg, then the one with less
burstiness (corresponding to a smaller instantaneous arrival rate r) is more preferred in order to satisfy
the queuing constraints.

VI. SIMULATION RESULTS

The major scope of this work is to propose delay-aware system designs for improving the throughputs
of low-latency communications. In particular, we consider two different scenarios. We identify the optimal
power control under a scenario in which instantaneous CSI is available at the transmitter, while we apply
the HARQ-IR scheme in the absence of CSI. In this section, we further investigate the corresponding
throughput performances via numerical analysis and Monte Carlo simulations. In all the numerical analysis,
we consider a Rayleigh channel fading model, where mean value of channel gain is E{z} = 1. In addition,
we set the average SNR at the receiver to 15 dB for the good average channel quality scenario and to 0
dB for the poor channel scenario.

A. Throughput with instantaneous-CSI-driven optimal power control
We start with the comparison between the proposed optimal power control scheme and constant

transmit power schemes (without power control). Note that the proposed scheme guarantees the reliability
ν instantaneously. In this comparison, we consider two schemes without power control: One scheme
instantaneously guarantees the reliability by coding rate adaption while the other one just sets a constant
coding rate as r = 2.5 bits/symbol. It should be mentioned that under the constant coding rate scheme,
the coding rate is constant in time or channel fading, and therefore does not provide any guarantees
regarding the reliability. The comparison results are shown in Fig. 3. First of all, we observe that the
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QoS-constrained throughputs of schemes guaranteeing the reliability are quasi-concave in the (target) error
probability ν, while the scheme with constant coding rate is not influenced by ν (as it does not provide
reliability guarantees). In addition, the proposed optimal power control provides the highest throughput (by
determining the optimal ν) in comparison to both schemes without power control. Moreover, comparing
the two constant power schemes, we observe that the performance loss in terms of throughput is introduced
by instantaneously guaranteeing the reliability.

In Fig. 4, we show the average throughput performance of the optimal power control with constant
arrivals and ON-OFF Markov source, while varying the (target) error probability ν that needs to be satisfied
for each instantaneous transmission. First of all, again confirming the results of Fig. 3, we observe that the
QoS-constrained throughputs of both types of sources are quasi-concave in the (target) error probability
ν. On the one hand, to satisfy an extremely low target error probability, the source has to determine a
low coding rate, which leads to a low throughput. On the other hand, if the error probability is too high,
it indicates that with a high probability the data packet needs to be retransmitted. These retransmissions
cost additional time/symbol resources and increase queuing delays, thus reducing the QoS-constrained
throughput. This characteristic of concavity indicates that the balance is achieved and the throughput is
maximized at an optimal value of ν. In particular, when the target error probability ν is relatively low, it is
preferred to simply apply this ν in (17) in the process of determining the optimal power control. However,
if the required error probability of the service is relatively high, e.g., ν = 0.1, it is preferred to set ν to
be lower to maximize the QoS-constrained throughput. Secondly, as expected, a loose QoS requirement
(corresponding to a low value of θ) results in a high throughput for both the scenarios with constant and
random data arrival sources. Finally, in comparison to the constant data source, certain performance loss
is introduced if the data arrival becomes ON-OFF Markov distributed. In particular, this performance loss
is relatively small for the scenario with loose QoS requirements (low θ), while it is quite significant when
the QoS requirement is strict (high θ).

Next, we investigate in more detail the impact of θ on the throughput performance of the proposed
power control, for given (target) error probabilities. As shown in Fig. 5, all the throughput curves are
strictly decreasing in θ. In addition, we observe a significant performance loss when the arrivals are
random (compared to constant-rate arrivals) or when the blocklength is increased from 100 symbols to
1000 symbols. In other words, beside the data arrival model, the blocklength also influences the throughput
performance. We further show in Fig. 6 the impact of the blocklength on the throughput. With a relatively
large θ and small ν, the throughputs of (both constant and random rate arrivals) are decreasing in the
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Fig. 3. The comparison between the proposed optimal power control and constant transmit power schemes.
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blocklength. On the other hand, it is observed that when θ is relatively small but ν is relatively large, the
throughputs are concave in the blocklength. In particular, in this concave case, the throughputs are not
very sensitive to the choice of blocklength. Hence, a short blocklength is in general a good choice for
the QoS-supporting system with the proposed instantaneous-CSI-driven power control.

B. Throughput of HARQ-IR
In this subsection, we investigate the throughput performance of HARQ-IR in the scenario without

instantaneous CSI feedback. We start with Fig. 7 to verify our analytical model in Proposition 1 and
Theorem 2. In particular, we show in the figure the relationship between the buffer overflow threshold
q and the logarithmic buffer overflow probabilities log Pr{Q ≥ q}. In particular, the arrival rate for
the constant-rate arrival model is given by the effective capacity in (25). For the ON-OFF discrete-time
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Markov arrivals, we set p11 = 0.3, p22 = 0.7, and the arrival rates in the ON state are given by lr
(bits/block) in (32). In Fig. 7, the curve of log(Pr{Q ≥ q}) = −θq is also provided as a reference. Note
that Pr{Q ≥ q} ≈ ςe−θq, where ς = Pr{Q > 0} is the probability that the buffer is not empty. This
reference curve actually indicates a lower bound representing the case of ς = 1. As shown in the figure,
since for either the constant-rate or ON-OFF Markov source the non-empty buffer probability ς is lower
than 1, certain gaps exist between these two curves and the reference curve log(Pr{Q ≥ q}) = −θq. More
importantly, the logarithmic buffer overflow probabilities decrease almost linearly when q is sufficiently
large, which matches well with the characterizations in (2) and (3)5. When q > 1100, by estimating the
slopes of these two curves via linear regression, we find that the slopes are −0.0099 and −0.0100 for the
constant-rate and ON-OFF Markov arrival models, respectively. Note that in the simulation we set θ=0.01,
which corresponds to a slop of −θ=−0.01. Hence, the slope errors of the two curves (in comparison to
−θ) are actually less than 1%, which is tiny, demonstrating the accurateness of our characterizations on
the FBL throughput.

Next, we study the impact of the fixed transmission rate R on the throughput with constant arrival
sources. The results are provided in Fig. 8 where we set the QoS exponent to θ = 0.1. It is observed from
Fig. 8 that the throughput is quasi-concave in R, i.e., there exists a globally optimal R maximizing the
throughput. The explanation is as follows. On the one hand, for a small R, the departure rate is also low,
i.e., this becomes the major limit (bottleneck) of the performance. On the other hand, when R is too large,
it introduces a significant outage probability ε, and therefore a considerable fraction of the packets are
dropped due to the deadline constraint. In this case, the decoding error probability becomes the bottleneck.
We also learn from the figure that when M is relatively larger, which corresponds to a looser deadline
constraint, a higher maximum throughput is achieved (by choosing the corresponding optimal value of
R). Similar results were observed in [44] for small θ values in the IBL regime, i.e., without considering
impact of finite blocklength. In particular, it has been shown in [44] that the throughput of HARQ-IR is
increasing in the fixed transmission rate R as long as the deadline constraints are ignored. Therefore, our
results are consistent with [44] in that a large M provides a high R and a low outage probability, thus
resulting in a high throughput.

Finally, we investigate the influence of the finite blocklength l on the throughput for constant arrival
models The results are shown in Fig. 9, where we set θ = 0.1. It is observed that the throughput is

5Note that as long as (2) is true, log Pr{Q ≥ q} ≈ −θq + log ς holds.
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Fig. 8. The impact of fixed transmission rate R on the throughput with constant arrival sources.

deceasing in the blocklength l. This is due to the fact that as a block-fading channel model is assumed,
a long l indicates a slow fading. Note that for delay sensitive network under queuing constraints, a slow
fading makes a strong attenuation last for a long time, which increases the probability of buffer overflows.
Hence, a longer blocklength l is expected to have a stronger influence on the throughput when the system
has stricter queuing constraints. This confirms another observation from Fig. 9 that the throughput curves
with a larger θ (corresponding to a stricter queuing constraints) decrease faster in l.

VII. CONCLUSION

We have studied in this work the FBL throughput of a low-latency IoT system operating with deadline
limits, and statistical queuing constraints. Throughput characterizations have been analyzed for both the
constant-rate and ON-OFF discrete time Markov arrivals. In particular, in the scenario with instantaneous
CSI, we have analyzed the optimal power control maximizing the throughput, and proposed an algorithm
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to determine the optimal power levels. In addition, for the scenario with no CSI at the transmitter, we
have employed HARQ-IR to improve the FBL performance. The decoding error probability and the outage
probability of HARQ-IR have been characterized, following which the distribution of transmission period
and throughput were derived. Finally, our characterizations have been verified via Monte Carlo simulations.
Via numerical results, we have further investigated the impact of the error probability, transmission rate,
QoS constraints and blocklength on the system throughput.
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