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Abstract—Taking into consideration of vehicle mobility and
fairness, in this paper we provide a cooperative offloading
algorithm maximizing the energy efficiency for a vehicular edge
computing network, while guaranteeing the shortest delay of
the worst case vehicle. In particular, through exploiting the
geometrical feature of the unidirectional road, we formulate a
mixed integer convex problem by jointly designing the offloading
selection and allocating the computation resource simultaneously.
The optimization is carried out by a proposed two-step optimiza-
tion algorithm: We first optimize the server selection to obtain the
minimized achievable delay, and subsequently optimize jointly
the selection and resource allocation to maximize the energy
efficiency while maintaining the optimal achievable delay. Via
simulations, we present the advantage of proposed algorithms
and evaluate the system performance.

Index Terms—energy efficiency, offloading, vehicular edge
computing, vehicular communication

I. INTRODUCTION

Vehicular applications, e.g., autonomous driving, on-wheel
infotainment services and intelligent transportation, have
gained a lot of popularity [1]. Along with the rapid develop-
ment of those applications, the explosive demands on process-
ing computation-intensive and latency-critical tasks become an
inevitable challenge to be addressed [2]. Therefore, the newly
emerged vehicular edge computing (VEC) network shows
significant advantage by offloading the computation services
remotely at the edge of the networks, instead of merely relying
on the on-vehicle devices. Moreover, in comparison to the
mobile cloud computing (MCC), the VEC servers are deployed
along with the road side units (RSUs), which provides the
computation capacity while fulfilling the latency requirements
due to the close proximity to the vehicles.

A crucial part of VEC is to design the offloading scheme,
which decides not only whether to offload or not, but also
including what and how to offload [3], [4]. The authors in [5]
propose a cooperative partial offloading scheme allocating the
computation resources and time slots to vehicles. In addition, a
low-complexity algorithm is proposed in [6] for a multi-server
offloading problem by decomposing it into sub-problems of
offloading selection and resource allocation. An offloading
framework is provided in [7] by leveraging the Stackelberg
game theoretic approach, where both the cost and the gain of
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the offloading are jointly considered. Moreover, [8] minimizes
the costs of vehicles and VEC servers at the same time, while
taking channel states and traffic arrival model into account.

However, most of the existing works addressing the co-
operative offloading problem in VEC networks either ignore
task queue of the server into account or formulate non-
convex problems which are generally solved by alternative
searching, resulting in sub-optimal solutions and costing sig-
nificant complexities [9]–[11]. Moreover, how to characterize
the completion delay of tasks and energy consumption should
be jointly considered in the cooperative offloading designs.

In this work, we consider a VEC network with multiple
servers providing service to multiple users. We exploit the
geometrical and unidirectional feature of the VEC to provide
an energy efficient offloading design while guaranteeing the
minimized maximum delay among the servers. In particular,
the main contributions are:
• By taking the advantages of the relaxed binary and intro-

ducing intermediate variables, we formulate an elegant
mixed integer convex optimization problem (which can
be solved efficiently) instead of a complex non-convex
problem.

• To address the energy efficiency problem, a two-step
algorithm is proposed, which optimizes both the offload-
ing decision and computation resource allocation, while
considering the queue status in each VEC server. Dif-
ferent from existing studies regarding the related topics
formulating complex non-convex problems and obtaining
merely suboptimal solutions, the proposed approach (in-
cluding the problem formulation and the corresponding
two-step algorithm) achieves the global optimum.

The rest of the paper is organized as follows. We present
the system model in Section II. Section III first introduces
the intermediates to formulate the optimization problems, then
provides the optimal two-step offloading scheduling design
accordingly. We provide the numerical results in Section V.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a unidirectional road (or one side of a two-
way road) with length LR, where M road side units (RSUs)
are located along the road side. Each RSU is equipped with
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Fig. 1. An illustration of the considered VEC network.

a VEC server. As shown in Fig. 1, the road is divided into
M segments according to the corresponding coverage area of
each VEC server. We denote by m ∈ M = {1, ...,M} the
index of the RSU and by Lm ∈ {L1, ..., LM} the length of
segment m, where M is the RSU set. We sort the index of
the RSUs by descending of the position xsm, i.e., xs1 ≥ xs2... ≥
xsM . Therefore, the location of the RSU m is given by xsm =
LR −

∑m
j=1 Lj + Lm/2. Furthermore, we denote by Fm ∈

{F1, ..., FM} the maximal CPU-frequency that the server m
is able to provide for the offloaded tasks. Due to the limited
computation resource, each server can only compute a single
task at the same time.

Due to the limited local computation resource and the
possible fact that processing the tasks of vehicles needs certain
(environment) information from the RSUs, each task consid-
ered in this work is required to be offloaded to a VEC server
and be executed within a latency constraint. We consider a
time-slotted manner for the offloading scheduling, i.e., each
scheduling decision is made at the beginning of each time
slot only for the vehicles that request offloading before the
time slot, where the waiting time in the queue is reflected by
the individual delay constraint. In particular, at the beginning
of a period of interest, N vehicles (at random locations on
the road) with a constant velocity v request to offload latency-
sensitive tasks to the VEC servers. Each request from vehicle
n ∈ N ={1, ..., N} contains a task that can be described as a
tuple (dn, cn, Tmax

n ), where N is the index set of vehicles, dn
is the size of input data and cn is the required computing
workloads. Moreover, Tmax

n represents the maximum delay
tolerance of the task of n-th vehicle1. Let xvn be the position of
the vehicle n on the road. Similar to the index of the RSUs, we
sort the index of vehicles by descending of the positions, i.e.,
xv1 ≥ xv2 ≥ ...≥ xvN . Furthermore, we denote by A ∈ ZN×M2

the decision matrix and A the corresponding set, in which the
element an,m ∈ {0, 1} is the decision variable, i.e., an,m = 1
or an,m = 0 indicates that task n is assigned to RSU m or
not. Recall that the road is unidirectional, task n is only able
to be offloaded to RSUs being in front of the vehicle, i.e.,
an,m ≤ xsm−xvn+1. In this way, an,m is possible to be 1 if and
only if xsm ≥ xv. Although all vehicles on the road segment
could request offloading service at any positions, requests from
the vehicles already located after the last RSU M will not
be responded by the VEC network (on the road segment of
interest), i.e., they will be serviced by the VEC network on the

1For the sake of simplicity, in this work, we represent the task of vehicle
n as task n and the server of RSU m as the server m.

next road segment. Furthermore, each task should be assigned
once and only once, i.e.,

∑M
m=1 an,m = 1,∀n ∈ N . Once

decisions are made, a vehicle starts to offload the task via a
wireless link when it enters the coverage area of the assigned
RSU.

A. Traffic model

To offload the task to the server m, the vehicle n must firstly
move to the edge of the corresponding coverage area. If the
vehicle n is already located in the area, the vehicle starts the
offloading immediately. Hence, the driving delay is given by
tvn,m = max{x

s
m−Lm/2−xvn

v , 0}.

B. Wireless transmission model in the offloading

We assume that the channel between a RSU and a vehicle
has Line-of-Sight (LoS). Hence, the channel gain can be
predicted with the known distance [15]. After arriving the
coverage area of an RSU, a vehicle is able to offload its
task via wireless link to the RSU. The transmission de-
lay/cost for offloading task n to the RSU m is given by
trn,m = dn

B log2(1+Pnhn,m/N0)
, where B is the bandwidth, Pn

is the transmit power of vehicle n, hn,m is the channel gain
between vehicle n and RSU m, and N0 is the noise power,
respectively. To avoid inter-vehicle interference, the offloading
process is only carried out if all previous offloading processes
are completed, which can be guaranteed by constraining the
offloading decision an,m, which can be written as

an,mt
v
n,m + (1− an,m)(tvn−1,m + trn−1,m)

≥ an−1,m(tvn−1,m + trn−1,m).
(1)

When the computation process is finished, RSUs transmit
the computation results to the vehicles through a micro-
cell [12]. Since the data sizes of the results are normally small,
the energy cost of a back-transmission from a RSU to a vehicle
is constant and more importantly negligible in comparison to
the task offloading process [13], [14].

C. Computation model

The CPU frequency at each server is assumed to be limited.
For the server at RSU m, at most Fm frequency can be
allocated for computing the offloaded task. If frequency fn,m
is allocated for the offloaded task with workload cn, computing
the task costs a computation delay tcn,m, which is given by
tcn,m = cn

fn,m
. By exploiting the dynamic frequency and

voltage scaling (DVFS) technique, we assume that the server
is able to adjust the frequency fn,m per task. However, the
frequency cannot exceed the maximal frequency Fm. On the
other hand, the minimal frequency fmin

m must at least fulfill the
condition, that the execution of the task is able to be finished
before the vehicle n leaving the coverage area of the server
m, i.e.,

fmin
n,m = max{cnv

Lm
,

cnvn
xsm + Lm/2− xvn

}. (2)



Furthermore, the server m offers no computation resource
to the vehicle n, if it is not selected. As a result, the fre-
quency constraints can be described as inequality chains, i.e.,
an,mf

min
n,m ≤ fn,m ≤ an,mFm. We define the CPU-frequency

matrix f ∈ RN×M that contains elements fn,m,∀n ∈ N ,m ∈
M.

D. Energy consumption model

Both the transmit energy of the vehicles for offloading
tasks and the computation energy of the RSUs are taken into
account. Specifically, the transmit energy Er relating to the
transmit power and duration is obtained as

Er =
∑

n

∑
m
an,mt

r
n,mPn. (3)

The computational energy Ec relating to the CPU-frequency
and assigned workloads is obtained as [16]

Ec =
∑

n

∑
m
κcnf

2
n,m, (4)

where κ > 0 is a hardware related parameter.

III. ENERGY EFFICIENCY MAXIMIZATION WITH AN
OPTIMAL OVERALL DELAY GUARANTEE

In this section, we provide our joint design on optimizing
both offloading decision and CPU-frequency allocation for a
considered time period and for a VEC network on a road seg-
ment of interest. The joint design has two aims, i.e., the overall
delay minimization and energy efficiency maximization, which
have the first and second priorities, respectively. To this end,
we in the following first characterize the completion time
cost of each task, subsequently following the characterization
formulate the problem for minimizing the overall delay (of
all tasks), and finally further introduce a energy minimization
process while guaranteeing the minimized overall delay.

A. Completion time cost of a task

As a VEC network in the unidirectional road, its com-
putation resource is unequally distributed according to the
geometrical positions of those vehicles, i.e., vehicle n has
less offloading choices if it is located close to the end of
the road segment. To determine the completion time of the
task from vehicle n, we need to track when and where task
is processed while taking the vehicle location in to account.
Thus, to facilitate modelling the overall delay we introduce
two intermediates: TRT

n,m the ready time of task n in server m
and tn,m the process time of task n in server m, respectively.

1) Ready time (point) TRT
n,m: indicates the instant when the

task is ready for computing, which cannot be earlier than either
the offloading time of the vehicle n or the process time of
previous task in server m. It reads as

TRT
n,m = max{tn−1,m, an,m(tvn,m + trn,m)}. (5)

Specially, we have TRT
0,m = 0 and t0,m = 0. It is worth to

mention that the task can not be offloaded before the vehicle
arrives the coverage area. Moreover, if the server m is not
selected for task n, i.e., an,m = 0, TRT

n,m only depends on the
previous tasks.

2) Process time (point) tn,m: implies the instant that the
computation process of task n is finished in server m:

tn,m = TRT
n,m + a2n,mt

c
n,m. (6)

Note that the decision variable expressed as a2n,m is for
the purpose of maintaining convexity in the optimization
problem and it does not influence the results since it is binary.
Furthermore, it holds that tn,m ≥ TRT

n,m ≥ tn−1,m, where
the equality holds if an,m = 0. It implies that the process
time of task n in the server m is virtually identical with the
previous task n − 1 in the same server m if that server is
not selected. Therefore, the actual complete time of task n is∑
m an,mtn,m. It is worth to mention such expression only

holds for the unidirectional road.
With the intermediates tn,m and TRT

0,m, the model in the VEC
network can be intuitively interpreted as follows: a vehicle n
offloads M−1 empty tasks with no input data to other servers
except the real selected one, while the real task with input data
dn is offloaded to the selected server. At the same time, server
m computes N tasks for all vehicles, including empty tasks.

B. Overall delay minimization

The overall delay of all tasks is limited by the completion
time cost of the last task. Since all N tasks are offloaded
to the VEC servers, the overall delay is equivalent to the
maximal process time among the servers for the last task N ,
i.e., max

m
{tN,m}. We minimize the overall delay by optimally

allocating the CPU-frequency f , as well as the offloading
decision A. The problem is formulated as

P1 : minimize
f ,A

max
m

tN,m (7a)

subject to∑M

m=1
an,m = 1, ∀n ∈ N , (7b)

an,m ≤ xsm − xvn + 1, ∀n ∈ N ,m ∈M, (7c)

an,mf
min
n,m ≤ fn,m ≤ an,mFm, ∀n ∈ N ,m ∈M,

(7d)
an,mt

v
n,m + (1− an,m)(tvn−1,m + trn−1,m)

≥ an−1,m(tvn−1,m + trn−1,m), (7e)

an,m ∈ {0, 1}, ∀n ∈ N ,m ∈M, (7f)

where constraint (7b) ensures that each task will be and only
be offloaded once. Constraint (7c) represents the geometri-
cal relationship between vehicle n and possible RSUs. The
available CPU-frequency for task n in server m is restricted
by maximal available CPU-frequency Fm, minimal required
CPU-frequency fmin

n,m to ensure feedback process and decision
am,n in constraint (7d). Constraint (7e) ensures that there is
no interference between vehicles. The integer constraint (7f)
is for the binary decision variable.

1) Optimal solution of (7a): Since A is integer variable
with 2N×M possible offloading combinations of A, we first
decompose P1 into 2N×M sub-problems for a given A, where



each sub-problem can be written as

P1.1 : minimize
f

max
m

tN,m (8a)

subject to (7b), (7c), (7d) and (7e).

Then, we have the following lemma to characterize the
relaxed problem:

Lemma 1. P1.1 is convex in f with any fixed A.

Proof. First, we let A = A◦ ∈ A, where A◦ is an arbitrary
fixed server selection. It is trivial to show the constraints are
either affine or convex. We focus on the objective. As the
object function contains a maximum function, we replace it
with a variable p so that it follows

tN,m ≤ p, ∀m ∈M. (9)

Based on (5), TRT
n,m ≥ tn−1,m and TRT

n,m ≥ an,m(tvn,m+ trn,m)
hold. Hence, the second derivative of tn,m to f is

∂2tn,m
∂f2

=

{
2a2i,j

ci
f3i,j

, i = n and j = m

0, otherwise
≥ 0, (10)

where i is the index of column and j is the index of row,
respectively. As a results, P1.1 is convex in f .

Thus, P1 is a mixed integer convex problem (MICP) and
can be solved efficiently via the solvers, e.g., CVX [17] and
Gurobi [18] with computational complexity of O(2N×M ). To
further reduce the computational complexity, we exploit the
constraint that each task can only be offloaded once, i.e.,∑M
m=1 an,m = 1, ∀n ∈ N , to pre-define a feasible set of

A. In particular, any feasible variable A must consist a single
1-element and M-1 0-elements in any column n. Therefore, we
denote the feasible set Â that contains total N ×M possible
combinations of an,m, i.e., Â = {A|

∑M
m=1 an,m = 1,∀n ∈

N}. The optimal solution of A must be the element of Â.
Instead of going through all 2N×M convex subproblems, we
only need to compute the feasible set A and solve N×M con-
vex subproblems. As a result, we reduce overall computational
complexity from O(2N×M ) to O(N ×M).

2) Greedy searching method: Nevertheless, the complexity
of the above approach is high, especially for large scale
networks with. Therefore, we propose a greedy searching
method addressing this issue, which introduces a significantly
low complexity. In particular, we first relax the integer con-
straints (7f) for P1 as 0 ≤ an,m ≤ 1. Then, we have the
following lemma to characterize the relaxed problem:

Lemma 2. P1 is jointly convex over f and A with the
relaxation of A.

Proof. We have already proven ∂2tn,m

∂f2
≥ 0 in Lemma 1.

Similarly, the second derivative of tn,m with respect to A is
given by

∂2tn,m
∂A2

=

{
2 ci
fi,j

, i = n and j = m

0, otherwise
≥ 0. (11)

To show the joint convexity, we further investigate the deter-
mination of Hessian matrix H(tn,m)

detH(tn,m)=

{
4a2i,j

ci
f4i,j
−
(

2ai,jci
f2i,j

)2
, i = n, j = m

0, otherwise
≥ 0.

(12)
As a result, both the second derivatives are non-negative and
the Hessian matrix is positive semi-definite. Hence, tn,m is
jointly convex in both A and f .

Similarly, we can show that all the constraints are either
convex or affine with relaxed A. Therefore, P1 is jointly
convex in f and A ∈ [0, 1]n×m.

Thus, we first solve P1 as a relaxed convex problem without
integer constraint (7f) to obtain optimal solution f̃∗ and Ã∗.
Then, convert Ã∗ to an integer solution by taking both (7b)
and (7f) into account as follows:

a∗n,m =

1 if m = argmax
j∈M

ã∗n,j ,

0 otherwise.
(13)

Finally, we solve P1.1 with A = A∗ to obtain the solution
f∗ and the result t∗N,m. Comparing to the MICP, such method
reduces the complexity significantly. However, it is worth to
mention that it provides only a sub-optimal solution instead
of guaranteeing global optimum by solving MICP.

C. Two-step energy minimization

The overall delay of the network is constrained by the
optimal solution to P1. Here we provide a further step network
optimization maximizing the energy efficiency while guaran-
teeing the minimal overall delay. Note that the total duration
of process time is restricted, i.e., maximizing the energy
efficiency is equivalent to minimizing the energy consumption.
This energy consumption minimization problem is formulated
as

P2 : minimize
f ,A

E = αEr + βEc (14a)

subject to tN,m ≤ tmax
N,m, ∀m ∈M (14b)

(7b), (7c), (7d), (7e) and (7f)

where α and β are non-negative weight factors indicating the
importance of the energy consumption at vehicles and servers,
respectively. In particular, the objective represents the absolute
total energy consumption of the network when we set α = β =
1. Note that P2 has the same convex constraints as P1, i.e., it
is also convex if the convexity of its objective function can be
shown. We show this convexity and further characterize P2
in the following lemma:

Lemma 3. Energy consumption E is jointly convex in f and
A with the relaxation of A.

Proof. The total energy consumption E consists of trans-
mission energy consumption Er and computational energy
consumption Ec. It is trivial to show that each component
of Er, namely an,mt

r
n,mPn, is convex in A. Therefore, Er



is also convex in A. Similarly, we have the second derivative
of component of Ec with respect to f is non-negative, i.e.,
d2κcnf

2
n,m

df2
≥ 0,. Furthermore, Er does not depend on f and

Ec does not depend on A, i.e., they are jointly convex in both
f and A. As the sum of Er and Ec, E is jointly convex in
both f and A.

Therefore, P2 can also be solved with both standard MICP
method or the proposed greedy method after having tmax

N,m

from P1. Via a two-step algorithm subsequently solving P1
and P2, the minimal energy consumption is achieved while
guaranteeing the optimal overall delay. The corresponding
computational complexity level is O(2N ×M). The pseudo
code of the algorithm is given in below.

Algorithm 1 Two-step optimization problem
1: Compute feasible set A according to constraint (7b).
2: Solve P1 according to Lemma 2 within A, get results
t◦N,m,∀m ∈M.

3: Let tmax
N,m = t◦N,m,∀m ∈ M and update the con-

straints (14b).
4: Solve P2 according to Lemma 3 within A, get solution

A∗, f∗.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results to show the
performance advantage of our proposed design in comparison
to other benchmark schemes.

We consider M = 5 RSUs deployed along a 100 meter long
unidirectional road. Each RSU is equipped with a VEC server
with a coverage range 20m. The maximum computational re-
source of each server Fm is uniformly distributed in the range
from 3 to 5 GHz. The speed of vehicles is set to v = 120km/h.
The locations of vehicles are also randomly distributed within
the road. In addition, task size dn and required computation
resource cn follow uniform distributions U(100, 300)KB and
U(0.5, 1.5)GHz, respectively. Furthermore, we consider the
bandwidth as B = 1MHz, the transmission power of each
vehicle as P = 100mW, and the noise power N0 = 10−10mW.
We also set α = β = 1 in the simulations. Following [16], we
set κ=10−11 as the hardware parameter for the computational
energy consumption. To verify our proposed schemes, we
introduce the nearest offloading (NO) scheme as a benchmark,
where all vehicles offload tasks to the nearest reachable VEC
server with a given CPU frequency Fm.

In Fig. 2, we show the key features of proposed two-step
optimization compared to the delay minimization approach in
P1. The left sub-figure and the right sub-figure present the
process status of each server for each approach, respectively.
The height of the rectangle is the process time of the last task
in the corresponding server. Moreover, the color represents
the CPU-frequency for preceding the tasks. The darker color
is showed, the higher CPU-frequency is allocated at that
time, where white color implies the server is idle. As P1
aims at minimizing the maximum of tN,m, the bottleneck

of the system is the highest rectangle (server 3 and 4 in the
top sub-figure). Therefore, prolonging of the process time or
changing offloading decision for the non-bottleneck tasks does
not affect the overall delay, but reduces the computational
energy consumption according to (4) via decreasing the CPU-
frequency. The prolongation of process time and the changes
in server selection are possible to be carried out in following
scenarios: i) The current task is already finished, but the next
assigned vehicle does not finish the offloading or does not
arrive, e.g., the blank space of server 4 is filled up in our two-
step algorithm. ii) The process time of all assigned tasks in
the server is smaller than the process time in the bottleneck
server, and the surplus between the completion time cost in
the bottleneck server and that server is sufficient to compute
another task, e.g., one of the assigned tasks in the server 2 is
taken over by the server 1 so that the process time of both
servers is prolonged. iii) The process time of all assigned
tasks in the server is smaller than the bottleneck server, but
the surplus is insufficient to compute one more task, e.g., the
tasks in server 5 can be prolonged until the maximal process
time is equal to the process time in the server 4, but the take-
over of another task is impossible.

To show the advantage of the two-step optimization, we
plot the overall delay and total energy consumption versus the
number of vehicles N in Fig. 3 and Fig. 4 with the same
setup. The results are obtained under the NO algorithm, delay
optimization and two-step optimization. Generally, increasing
the number of vehicles N also increases both the process
time and energy consumption regardless of the schemes.
Comparing to the NO algorithm, where the vehicle simply
chooses the nearest server to offload the task, solving P1
optimizes the selection to avoid the computational traffic jam
in the system, resulting a lower overall delay. Nevertheless, if
there are only few vehicles on the road, the optimization does
not always improve the overall delay. By keeping increasing
N , the performance gap between NO algorithm and overall
delay optimization grows more significantly. As our two-step
optimization guarantees the same optimal delay as P1, the
delay performance is also identical between the duo. From the
perspective of energy consumption, since the CPU-frequency
is fixed in the NO algorithm, the offloading consumes the
highest energy. On the other hand, if we focus on the delay
optimization, only the bottleneck servers has to provide high
CPU-frequency. For other servers, the CPU-frequency can
be freely chosen as long as the process time of the servers
does not surpass the bottleneck ones. Therefore, the energy
consumption decreases comparing to NO algorithm. Our two-
step optimization therefore prolongs the process time of all
possible tasks to the limit while guaranteeing the optimal
overall delay, resulting a minimum of the energy consumption.

V. CONCLUSION

In this paper, we studied the cooperative offloading scenario
from the perspective of both delay and energy consumption.
By exploiting the geometrical feature, we first formulated an
elegant mixed integer convex optimization problem instead
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of a complex non-convex problem to minimize the overall
delay. Through the analytical insight, we proposed a two-
step optimization algorithm that achieves the minimal energy
consumption while guaranteeing the optimal delay constraints.
Via numerical simulation, we illustrated the key features of our
algorithm and compared the system performance with other
benchmark schemes, to show the advantage of the proposed
algorithm.

It is worth to point out that the approach introduced in this
work obtaining the global optimal solution can also be applied
in solving other dual-objective mobile offloading problems,
e.g., maximizing average offloading rate while minimizing
worst case delay.
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