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Abstract—In this work, we study an energy harvesting (EH)-
enabled low-latency communication network where a full-duplex
server continuously performs wireless power transfer (WPT) to a
half-duplex sensor. The sensor is designed to operate periodically
in each updating round, during which the sensor firstly harvests
energy via the WPT process, then collects measurement data
and wirelessly transmits an update to the server based on the
harvested energy. We assume that no energy can be reserved at
the end of each round, due to the deployed capacitor-structured
energy container. Leveraging the recent characterization on the
error probability in the finite blocklength (FBL) regime, we
derive the average Age-of-Information (AoI) in the considered
network and construct a problem minimizing the average AoI
via optimizing the duration of the updating round. The convexity
of the optimization problem is shown, following which an efficient
optimal solution is provided. At last, via Monte Carlo simulations,
the convexity of the problem can also be visualised, and the
average AoI performance of the network is evaluated.

Index Terms—Energy harvesting (EH), internet of things (IoT),
age of information (AoI), finite block length (FBL).

I. INTRODUCTION

In wireless sensor networks (WSNs), the limited battery
storage at sensors has become a key restriction in network
operation [1]. The required manual battery exchange and pos-
sible energy refilling have resulted in high expenses, especially
when massive devices are involved in a network [2]. To
get rid of the energy constraint in wireless networks, radio-
frequency (RF) energy harvesting (EH) technologies have been
deployed and proved to be capable of prolonging the battery
lifetime of devices [3], [4]. In particular, by merging the
EH technologies into wireless networks, the wireless powered
communication networks (WPCNs) have been enabled with all
devices being powered by wireless energy transmitters [5]–
[7]. Due to the high controllability and high flexibility on
power transfer, WPCNs have attracted abundant researchers
and been investigated in multifarious applications. In [8]–
[10], the authors have assumed the network performs wireless
power transfer (WPT) and information transmission separately,
where WPT is applied in the downlink for harvesting energy
to the devices, then the information is transmitted via up-
link channels with the harvested energy. By optimizing the
allocations of time resource and power resource, both the
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network throughput [8], [9] and the energy efficiency [10]
have been improved in WPCNs. Moreover, by exploiting the
strategy of simultaneously wireless information and power
transfer (SWIPT) [3], WPCNs have also been extended into
relaying networks, where both the energy and information are
loaded on the signal from a source node and the carried energy
is harvested by a relay node. Then, the relay forwards the
information with obtained energy. In existing literature, the
related relaying schemes have been explored for improving
the network capacity [11], reducing the transmit power under
reliability constraints [12] and maximizing the network util-
ity [13].

On the other hand, the freshness of information also plays
a critical role in real-time operations [14]. As a novelty
metric of transmitted data message, the concept of age of
information (AoI) has been introduced in [14] to indicate such
freshness [15]. So far, AoI has been extensively characterized
in copious wireless networks, such as multi-hop networks [16],
broadcasting networks [17], edge computing networks [18],
and networked control loops [19]. In particular, AoI is also
analyzed in WPCNs. Since a lower value of AoI generally
stands for an advanced data freshness, the AoI has been
minimized for WPCN in literature via designing the updating
policies with a relay node in [20] and with cognitive radio
in [21].

However, all existing works [20]–[23] regarding AoI in
WPCNs have assumed error-free channels. Clearly, with infi-
nite blocklength (IBL), a coding rate lower than the Shannon
capacity is sufficient for an error-free data transmission. By
contrast, confirmed in [24], with a finite blocklength (FBL),
data transmission may still result in an error probability regard-
less of blocklength, which is not negligible. To the best of our
knowledge, although AoI has been studied in the FBL regime
in [25], while considering the impact of finite blocklength, a
characterization of AoI in WPCNs has not been performed
yet. This motivated us to exploit the characterization of the
decoding error probability with FBL codes [24] and focus on
the average AoI in WPCN.

In this paper, we consider a simple IoT network with one
full-duplex server and one half-duplex sensor. The sensor is
wirelessly powered by the server, collects and transmits infor-
mation update based on the accumulated harvested energy. We
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Fig. 1. An example of considered system

first characterize the average AoI while the network performs
periodic updating rounds. Then, we focus on the average AoI
minimization problem with the round duration to be optimized.
Under constraints of error probability and SINR, we rigorously
prove the convexity of the interested optimization problem,
with which the problem can be efficiently optimally addressed.
Finally, via Monte Carlo simulations, the convexity of the
focused problem is validated, and the impacts of FBL codes
and coding rate are observed.

The remaining part of the paper is organized as follows.
In Section II, we introduce the system model. Section III
characterizes the AoI performance under the consideration of
the FBL impact. In section IV, the optimization problem is
formulated and the analytical solution is provided. The Monte
Carlo simulation results are presented in Section V, and finally,
the conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider an IoT network, where a server requires local
information update with data size of d bits (for each update)
from a sensor continuously. We assume the sensor to be an
active source, i.e., the most recent information is available
upon request. The sensor is passive and mounted with ca-
pacitors to store energy. Note that the sensor is assumed to
have no rechargeable battery and the operation fully relies on
the wireless power transfer (WPT) via radio frequency from
the server. The server enables a full-duplex model, where the
wireless information transfer (WIT) is carried out in the same
channel of WPT. With a continuously existing signal from
the source for energy harvesting, no downlink communication
is enabled in the occupied channel, i.e., the sensor receives
no acknowledgement from the server. Since the information
update is carried out circularly, we consider that all behaviors
of the sensor between the previous update and the current
update belong to an information updating round. In particular,
each round can be broken down into three phases: i) the
sensor harvests radio energy from the server over charging
time tc, while receiving energy Ec; ii) Then, it collects the
current information with collecting time ts, while spending
energy Es; iii) Finally, it transmits the data via a wireless
channel over transmission time tr, while consuming energy
Er. Due to the simple circuit with a single antenna in the
sensor, the operation of each phase is mutually exclusive

from another, i.e., the sensor cannot harvest energy while
transmitting data. Therefore, the sensor is operated in a half-
duplex mode. Denoting by TS the duration of one symbol,
the blocklength of transmission n = tr

TS
belongs to the finite

blocklength regime, namely, 20 6 n 6 2000. As a result, the
total time duration for a single information updating round T
is given by

T = tc + ts + tr. (1)

On the other hand, the total energy consumption cannot
exceed the total harvested energy gain, i.e., Ec > Er + Es.
Furthermore, since there is no dedicated battery on the sensor,
we assume the surplus of unspent energy from the current
round cannot be reserved to the next one and the transmission
should be carried out with short blocklength/short packet to
avoid a power leakage from the capacitor. Note that the energy
conversion is not perfect. In this work, we consider an energy
harvest efficiency µ 6 1. Let z denote the channel gain
between the sensor and the server. Then, the harvested energy
over charging time tc is given by

Ec = µ
zPc
ζ
tc, (2)

where Pc is the transmit power of the server and ζ is the
pass loss. After collecting the data, sensor transmits the packet
using the harvested energy. Therefore, the transmit power of
sensor Pr depends on the amount of energy left and the
duration of transmission, i.e.,

Pr =
Er
tr

6
Ec − Es

tr
. (3)

At the server side, via self-interference cancellation technolo-
gies, transmission and reception are enabled to be operated
simultaneously. Due to the imperfect cancellation, the residual
interference is not negligible. We denote by h the power gain
of the residual loop interference. As a result, the signal-to-
interference-noise ratio (SINR) at the server side γr is given
by

γr =
zPr
ζ

1

σ2 + hPc
, (4)

where σ2 is the noise power and we assume the channel to be
constant within the three phases and perfectly known, due to
the short collecting and transmission time.

III. CHARACTERIZATION OF CODING ERROR
PROBABILITY AND AGE-OF-INFORMATION

A. Decoding Error Probability with Short Packet

The updating round is considered as a failure(success),
if the error (not) occurs during decoding the transmitted
information update. Recall that short packets are exploited
for the transmission of the information update. The decoding
error probability is significantly influenced by SINR γr, even
when the coding rate is lower than the Shannon capacity. In
particular, with a blocklength n = tr

TS
and a coding rate r, the



Fig. 2. Illustration of AoI. The transparency indicates the likelihood of the
area that contributes in AoI.

decoding error probability of any information update at the
server side is given by [24]

ε = P(γr, r, n) ≈ Q
(√

n
V (γr)

(C(γr)− r)loge2
)
, (5)

where r = dTS
tr

is the coding rate (in bit/symbol) and C =

log2(1 + γr) is the Shannon capacity. In addition, V = 2γ+γ2

(1+γ)2

is the channel dispersion. Note that sensor receives neither Ac-
knowledge (ACK) nor Negative Acknowledgement (NACK)
from server. Furthermore, the sensor always transmits the most
recent information and discards the previous one regardless
of a success or a failure. Therefore, the error probability of
each transmission is independent and identically distributed.
Considering an arbitrary current round, denote by Xk the event
that the transmission succeeds at previous kth round, while all
rounds between the previous kth round and the current round
fail. Then, the probability of the event Xk is given by

P(Xk) =

(
1− ε(γr, r,

tr
Ts

)

)
εk−1(γr, r,

tr
Ts

),∀k > 1. (6)

B. Time-Average Age-of-Information

The instantaneous AoI ∆(τ) at time instance τ is defined
by the freshness of information, i.e.,

∆(τ) = τ − U(τ), (7)

where U(τ) is the time instance of the most recently received
information update on the server. Clearly, ∆(τ) is a linear
increasing function w.r.t. τ within the interval of any round,
i.e., τ ∈ [τ0, τ0+T ). Note that the update is only considered as
received, if the transmitted data packet is successfully decoded
by the server. Therefore, for any current round at any time, the
AoI depends on how many failure rounds are there between
the current round 0 and the last previous successful round k,
where k > 0. In particular, if Xk is true, the accumulative AoI
over the interval is represented by the sum of all parallelogram
areas Qk and triangle area Q1, which are illustrated in Fig. 2.
Therefore, Qk is given by

Qk =

{
1
2T

2, k = 1,
T 2, Otherwise. (8)

Then, the time-average AoI can be written as

E[∆] = lim
τ0→∞

∑K
k=1 P(Xk)(

∑k
i=1Qi)

τ0 + T − τ0

= lim
τ0→∞

K∑
k=1

(
k − 1

2

)
T
(
εk−1 − εk

)
= lim
τ0→∞

(
1

2
T +

K−1∑
k=1

kεkT − εK
(
K − 1

2

)
T

)

=
1

2
T +

∞∑
k=1

kεkT,

(9)

where K = τ0
T is the number of information updating

rounds, which approaches to infinity when τ0 → ∞, and
ε = ε(γr, r,

tr
Ts

). Since K → ∞ as τ0 → ∞, the term
of polynomial series sum vanishes for all ε 6 εmax, where
εmax 6 0.1 is the error probability threshold.

IV. TIME-AVERAGE AOI MINIMIZATION

Based on the above characterizations, we aim at minimizing
the time-average AoI E[∆] by optimizing the time duration
of each round T , while fulfilling error probability and SINR
constraints. The optimization problem is formulated as

minimize
T

E[∆] (10a)

subject to ε 6 εmax, (10b)
γr > γmin, (10c)
Er + Es 6 Ec, (10d)
T = tc + ts + tr, (10e)

where constraint (10b) and (10c) ensure the quality of trans-
mission to prevent a waste of energy, where εmax 6 0.1 is
the error probability threshold and γmin > 0dB is the SINR
threshold. Since the coding rate r and the collect time ts
are fixed, for any given information bits d, the transmission
duration tr = d

r is also fixed for each transmission. Therefore,
the variable T appears as a linear function of tc, and to
optimize T is essentially equivalent to choose how long the
sensor should be charged, i.e., selecting tc. Moreover, it is
trivial to show that the equality of constraint (10d) should
hold for the optimal solution, as it is always beneficial to
spend all charged energy instead of discarding any amount
of it. Therefore, by taking (9) into account, the optimization
problem (10) can be reformulated as

minimize
tc

1

2
T +

∞∑
k=1

kεkT (11a)

subject to ε 6 εmax, (11b)
γr > γmin, (11c)
Er + Es = Ec. (11d)

Then, we have the following key lemma to characterize the
reformulated problem:



Lemma 1. All the constraints in problem (11) are convex. And
under the constraints, the objective function of problem (11)
is also convex in tc.

Proof. First, we show the convexity of the error probability.
Based on (2), (4) and constraint (11d), we have

γr =
z

ζ

1

σ2 + hPc

Ec − Es
tr

=
µz2Pc

ζ2tr(σ2 + hPc)
tc −

zEs
ζ(σ2 + hPc)tr

.

(12)

Then, the first-order derivative w.r.t. tc using the chain rule is
given by

∂ε

∂tc
=
∂ε

∂ω

∂ω

∂γr

∂γr
∂tc

, (13)

where ω =
√

n
V (C(γr)− r).

Similarly, the second-order derivative is given by

∂2ε

∂t2c
=
∂2ε

∂ω2

(
∂ω

∂γr

∂γr
∂tc

)2

+
∂ε

∂ω

∂2ω

∂γ2r

(
∂γr
∂tc

)2

+
∂ε

∂ω

∂ω

∂γr

∂2γr
∂t2c

.

(14)

For each component of the derivative, which is also in the
form of the derivative, we have

∂ε

∂ω
= − 1√

2π
e−

ω2

2 , (15)

∂2ε

∂ω2
=

1√
2π
ωe−

ω2

2 , (16)

∂ω

∂γr
=

√
n(r + γr(γr + 2)− log(γr + 1))

(γr(γr + 2))
3
2

, (17)

∂2ω

∂γ2r
=

√
n√

(γr + 1)2γ5r (γr + 2)5
·(

−3r(γr + 1)2 − γr(γr + 2)(γ2r + 2γr + 2)

+3(γr + 1)2 log(γr + 1)
)
, (18)

∂γr
∂tc

=
µz2Pc

ζ2tr(σ2 + hPc)
, (19)

and
∂2γr
∂t2c

= 0. (20)

By merging (15)-(20) into (14), it can be rewritten as

∂2ε

∂t2c
=

1√
2π
e−

ω2

2

(
ω

(
∂ω

∂γr

)2

− ∂2ω

∂γ2r

)(
∂γr
∂tc

)2

. (21)

With the condition that the coding rate does not exceed the
Shannon capacity, i.e., C(γr) > r, it holds ω > 0. Furthermore,
from [4], we have ∂2ω

∂γ2r
6 0, if γr > 1. As a result, it holds

that ∂2ε
∂t2c

> 0, i.e., constraint (11b) is convex.
It is trivial to show that the constraint (11c) is convex

and constraints (11d) is affine. Therefore, all the constraints
of (11) are either convex or even affine.

Next, we move on to the convexity of the objective function
E[∆] w.r.t. tc. We define fk = kεkT . For any k > 1, we have

∂2fk
∂t2c

= k(k−1)εk−2tc(ε
′)2 +kεk−1

(
∂2ε

∂t2c
tc + 2

∂ε

∂tc

)
.

(22)

Since all other terms in (22) are non-negative, we focus on
the sign of ∂2ε

∂t2c
tc + 2 ∂ε

∂tc
. With the condition ε 6 εmax 6 0.1,

i.e., ω > Q−1(0.1) > 1.25, and based on (12), we have (23)

∂2ε

∂t2c
tc + 2

∂ε

∂tc

=A1

(
ω

(
∂ω

∂γr

)2

(γr+A2)− ∂2ω

∂γ2r
(γr+A2)− 2

∂ω

∂γr

)

>A1

(1.25
∂ω

∂γr
γr − 2

)
︸ ︷︷ ︸

B

∂ω

∂γr
− ∂2ω

∂γ2r
γr


+A1A2

(
ω

(
∂ω

∂γr

)2

− ∂2ω

∂γ2r

)
,

(23)

where the constants A1 = 1√
2π
e−

ω2

2
µz2Pc

ζ2tr(σ2+hPc)
> 0 and

A2 = zEs
ζ(σ2+hPc)tr

> 0. Furthermore, for any n > 20 and
γr > 1, we have that

B =
1√

γr(γr + 2)3
·
(
1.25
√
n(γ2r + 2γr + r)

−1.25
√
n log(γr + 1)− 2

√
γr(γr + 2)3

)
> 0. (24)

In the meantime, we can also show that

∂ω

∂γr
=

√
n(r + γr(γr + 2)− log(γr + 1))

(γr(γr + 2))
3
2

=

√
n(r + γr(γr + 1) + γr − log(γr + 1))

(γr(γr + 2))
3
2

>
√
n
r + γr(γr + 1)

(γr(γr + 2))
3
2

> 0, ∀γr > 1.

(25)

As a result, it holds that ∂2fk
∂t2c

> 0 for any k > 1, i.e., fk
is convex in tc. As the sum of convex function, the objective
function 1

2T +
∑∞
k=1 kε

kT is also convex in tc.

We have shown in Lemma 1 that the objective function is
convex and all constraints in Problem (11) are either convex or
affine. Hence, Problem (11) is a convex one, i.e., Problem (11)
can be solved optimally and efficiently via standard convex
programming method tools.

V. SIMULATION RESULTS

In this section, via Monte Carlo simulations we validate
our analytical results and evaluate the system performance. In
all simulations, we consider the following parameterization.
First, we set the transmit power of server to Ps = 30 dBm. In
addition, the distance between server and sensor is 5 m and



(a) values of individual fk and sum of fk versus charging time tc.
The horizontal line indicates the convex regime.
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(b) error probability ε and average AoI E[∆] versus charging time tc.
The horizontal line indicates the convex regime.

Fig. 3. The impact of charging time tc on component fk Average AoI E[∆]
and error probability ε. The dashed lines indicate the charging time, where
ε = εmax.

consider a path-loss exponent of 2.7, i.e., path loss ξ = 52.7,
and the gain of channel fading is set to z = 1. Moreover,
The noise power level is −20 dBm. The information amount
of update is d = 50 bits and considered as constant for each
update, which is transmitted over tr = 3.2 ms with duration
of symbol Ts = 0.025 ms. Finally, the simulation is carried
out with total running time max τ = 3600 s.

We start with Fig. 3 to present the impact of charging time tc
on the system. In particular, we plot a) average AoI E[∆] (as
left y-axis) and decoding error probability ε (as right y-axis),
as well as b) AoI component fk = kεkT versus charging time
tc. Note that the dashed vertical lines indicates the charging
time, where it fulfills ε = εmax. we can see that both ε
and E[∆] are convex in tc when ε > εmax. In addition, a
similar convexity can be also observed for fk regardless the
value of k. These observations confirm our analytical results
in Lemma 1. Moreover, since fk contains exponential error
function with the order of k, the influence of high-order
fk on the average AoI is more significant with a lower tc.
When tc is getting significantly longer, fk vanishes due to
the exponentially deceasing ratio and is eventually dominated
by 1

2T .
Next, we plot in Fig. 4 the optimal time-average AoI , i.e.,

the optimal value E[∆]∗ of Problem (11), versus the number
of information bits d. Different distances of the wireless links
between the server and the sensor are considered. Since the
error probability is monotonic function in d, E[∆]∗ increases
while d increasing regardless of different setups. However,
the influence of information size on the optimal mean AoI
becomes more significant when the distance between server
and sensor is getting large. Meanwhile, when d is small, the

Fig. 4. Optimal mean AoI E[∆]∗ versus information bits d while varying the
distance between server and sensor for 4.5 m, 5 m and 5.5 m.

gap of E[∆]∗ tends to be closer. These observations match well
with our analytical model. In fact, according to (9), when d
approaches to 0, as all the terms related to fk also vanish,
E[∆]∗ = 1/2T holds. On the other hand, when d goes too
large so that the constraint ε 6 εmax cannot be fulfilled (for
any feasible values of tc), the problem becomes infeasible.
Note that a long distance has a negative influence on the SINR.
Therefore, the feasible set of d is much shorter for the distance
of 4.5 m, comparing to the one of 5.5 m.

To depict the impact of FBL codes, we study the optimal
mean AoI E[∆]∗ versus the blocklength for the information
transmission n in Fig. 5. To compare with the impact of infor-
mation bits, we choose the same setups of distance between
server and sensor as 4.5 m, 5 m and 5.5 m, respectively. As
expected, E[∆]∗ decreases in n, and the decrease is in an
exponential manner.Recall that we assume tc � tr. Therefore,
even increasing n also implies a longer tr, namely, a longer
T , the influence on the average AoI is still negligible. Recall
that the optimal E[∆]∗ will also eventually converge to 1

2T
when we keep increasing n. If the assumption of tc � tr
does not hold, it implies that the blocklength is infinite or
sufficient long. Then, we can calculate the optimal solution for
the infinite blocklength (IBL) regime. In particular, E[∆IBL]∗

is 1
2T , when the inequality C(γr) ≥ r is fulfilled. Moreover,

similar to Fig. 5, we can also observe the different feasible
intervals of n regarding to the distance between the user and
the server. Combing the observation of both Fig. 4 and Fig. 5,
adjusting the coding rate according the quality of channel is
suggested, which makes the sensor to be able to transmit the
update with a reasonable charging time.

VI. CONCLUSION

In this work, we have studied an EH-enabled IoT network,
where a server operates in a full-duplex mode and transmits
harvesting signals to a sensor and simultaneously receives



Fig. 5. Optimal mean AoI E[∆]∗ versus blocklength n while varying the
distance between server and sensor for 4.5 m, 5 m and 5.5 m.

the measurement update from the sensor. Within each sin-
gle time duration length, the sensor is assumed to repeat
a behaviour cycle of harvesting energy, collecting data and
transmitting updates back to the server. The average AoI
of the updates has been characterized, based on which we
formulated an optimization problem minimizing the average
AoI via determining the time length of the updating round.
The problem is proved to be convex, i.e., the optimal solution
can be efficiently obtained via convex optimization tools.
Via simulations, we validate our analytical results and show
the impact of information bits and blocklength on the AoI
performance.
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