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Abstract

In this paper, the blocklength-limited performance of a relaying system is studied, where channels are assumed

to experience quasi-static Rayleigh fading while at the same time only the average channel state information (CSI)

is available at the source. Both the physical-layer performance (blocklength-limited throughput) and the link-layer

performance (effective capacity) of the relaying system are investigated. We propose a simple system operation

by introducing a factor based on which we weight the average CSI and let the source determine the coding

rate accordingly. In particular, we prove that both the blocklength-limited throughput and the effective capacity

are quasi-concave in the weight factor. Through numerical investigations, we show the appropriateness of our

theoretical model. In addition, we observe that relaying is more efficient than direct transmission. Moreover, this

performance advantage of relaying under the average CSI scenario is more significant than under the perfect CSI

scenario. Finally, the speed of convergence (between the blocklength-limited performance and the performance in

the Shannon capacity regime) in relaying system is faster in comparison to the direct transmission under both the

average CSI scenario and the perfect CSI scenario.

Index Terms

Finite blocklength, decode-and-forward, relaying, throughput, effective capacity, average CSI.

I. INTRODUCTION

In wireless communications, relaying [1]–[3] is well known as an efficient way to mitigate wireless

fading by exploiting spatial diversity. Specifically, two-hop decode-and-forward (DF) relaying protocols

significantly improve the capacity and quality of service [4]–[7]. However, all the above studies of the

advantages of relaying are under the ideal assumption of communicating arbitrarily reliably at Shannon’s

channel capacity, i.e., coding is assumed to be performed using a block with an infinite length.
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In the finite blocklength regime, especially when the blocklength is short, the error probability of

the communication becomes no longer negligible. Recently, an accurate approximation of achievable

coding rate is identified in [8, Thm. 54] for a single-hop transmission system while taking the error

probability into account. In [8] the authors show that the performance loss due to a finite blocklength

is considerable and becomes more significant when the blocklength is relatively short. Moreover, this

fundamental study regarding AWGN channels has been extended to Gilbert-Elliott Channels [9], quasi-

static fading channels [10], [11], quasi-static fading channels with retransmissions [12], [13] as well as

spectrum sharing networks [14]. However, all these works focus on single-hop non-relaying systems while

the study of the blocklengh-limited performance of relaying is missing.

In a two-hop relaying network, relaying exploits spatial diversity but at the same time halves the

blocklength of the transmission (if equal time division is considered). As has been shown in [8] that

the performance loss due to a finite blocklength is considerable and becomes more significant when

the blocklength is relatively short, the relaying performance in the finite blocklength regime becomes

interesting. In our recent work [15], we address in general analytical performance models for relaying

with finite blocklengths. We investigate the blocklength-limited throughput (BL-throughput) of relaying,

where the BL-throughput is defined by the average of correctly decoded bits at the destination per channel

use. We observe by simulations in [15] that the performance loss (due to a finite blocklength) of relaying is

much smaller than expected, while the performance loss of direct transmission is larger. This observation

shows the performance advantage of relaying in the finite blocklength regime (in comparison to direct

transmission). We further show the reason of this performance advantage in [16] that relaying has a

higher SNR at each hop (in comparison to direct transmission) which makes it set the coding rate more

aggressively.

Our previous work in either [15] or [16] is under static channels and with an assumption that the source

has perfect channel state information (CSI) of all the links. In this paper, we generalize the work in [15]

and [16] into a scenario with quasi-static Rayleigh channels. Under the quasi-static fading model, channels

vary from one transmission period to the next. Unlike the static channel model, it may be too optimistic

in practice to have instantaneously perfect CSI of all the fading channels (of the relaying system) at

the source. However, if the source does not have perfect CSI, e.g., only the average CSI is available at

the source, it is not able to determine an appropriate coding rate to fit the instantaneous channel. Thus,

the analysis and improvement of the blocklength-limited performance of such a relaying system (under
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quasi-static fading channels but only with average CSI) becomes interesting and also challenging. To the

best of our knowledge, these issues have not been studied in detail so far.

Under the described relaying system (with quasi-static fading channels and average CSI), we investigate

both the physical-layer performance, e.g., BL-throughput, and the link-layer performance, e.g., effective

capacity1. We propose a simple system operation by introducing a factor based on which we weight

the average CSI and let the source determine the coding rate accordingly. In particular, we prove that

both the BL-throughput and the effective capacity are quasi-concave in the weight factor. By simulations,

we show the appropriateness of our theoretical model. In addition, we show that the BL-throughput of

relaying is slightly increasing in the blocklength while the effective capacity is significantly decreasing

in the blocklength. Moreover, we observe the performance advantage of relaying in the finite blocklength

regime: Under the condition of having similar Shannon capacity performance, relaying outperforms direct

transmission in the finite blocklength regime. More importantly, this performance advantage under the

average CSI scenario is more significant than under the perfect CSI scenario. Finally, we find that the

performance loss due to a finite blocklength (the gap between BL-throughput and Shannon/outage capacity)

is negligible under the average CSI scenario in comparison to under the perfect CSI scenario.

The rest of the paper is organized as follows. Section II describes the system model and briefly introduces

the background theory regarding the finite blocklength regime. In Section III, we consider the physical-

layer performance and derive the BL-throughput of the relaying system. Subsequently, in Section IV the

link-layer performance of the relaying system is studied, where the distribution of the service process

increment and the maximum sustainable date rate are investigated. Section V presents our simulation

results. Finally, we conclude our work in Section VI.

II. PRELIMINARIES

A. System Model

We consider a simple relaying scenario with a source, a destination and a decode-and-forward (DF)

relay as schematically shown in Figure 1. The links between the above transceivers are referred to as the

direct link (from the source to the destination), the backhaul link (from the source to the relay) and the

relaying link (from the relay to the destination). In general, we assume the direct link to be much weaker

1The effective capacity is a famous performance model that accounts for transmission and queuing effects [17]. It characterizes the
(maximum) arrival rate of a flow to a queuing system and relates the stochastic characterization of the service of the queuing system to a
queue-length or delay constraints of the flow. It has been widely applied to the analysis of wireless systems [11], [18], [19]. However, no
effective capacity analysis of relaying under finite blocklength model has been published so far to the best of our knowledge.
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Fig. 1. Example of the considered single relay system scenario.

than the backhaul link as well as the relaying link. The entire system operates in a slotted fashion where

time is divided into transmission periods of length 2m (symbols). Each transmission period contains two

frames (each frame with length m), which corresponds to the two hops of relaying. The blocklength of

the coding over the channel in each frame is as long as the frame length m.

During a transmission period i, first a broadcasting frame is employed, followed by a relaying frame.

In the broadcasting frame, the source transmits data to the relay and the destination. The received signals

at the destination and the relay in the broadcasting frame of transmission period i are given by:

y1,i = ptxh1,ixi + n1,i, (1)

y2,i = ptxh2,ixi + n2,i. (2)

Next, if the data is decoded correctly and forwarded by the relay, the received signal at the destination

in the relaying frame of transmission period i is given by:

y3,i = ptxh3,ixi + n3,i. (3)

The transmitted signal x and received signals y1,i, y2,i and y3,i are complex m-dimensional vectors.

Besides, the transmit power at either the relay or the source is denoted by ptx. In addition, the noise

vectors of these links in transmission period i are denoted by n1,i, n2,i and n3,i, which are independent

and identically distributed (i.i.d.) complex Gaussian vectors: n∼N (0, σ2Im), n ∈ {n1,i,n2,i,n3,i}, where

Im denotes an m×m identity matrix. Moreover, h1,i, h2,i and h3,i are the channels (scalars) of the direct

link, backhaul link and relaying link during transmission period i, respectively. In this work, we consider

quasi-static Rayleigh fading channels where the channels remain constant within each transmission period

(includes two hops/frames) and vary independently from one period to the next. Hence, the instantaneous

channel gain of each link has two components, i.e., the average channel gain and the random fading. On

the one hand, we denote average channel gains (e.g., due to the path loss) of these three links over the
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transmission periods by |h̄2|2, |h̄2|2 and |h̄3|2. On the other hand, we assume these channels to experience

Rayleigh fading where the envelope
√
z of the channel fading (response) is Rayleigh distributed with

the probability density function (PDF) f (
√
z) = 2

√
z

σ2 e
−z/σ2 . Typically, the channel fading is modeled

as having unit power gain. This requires that σ2 = 1. Hence, the PDF of z, the gain due to Rayleigh

fading, is given by the exponential distribution: f(z) = e−z. We denote by zj,i (j = 1, 2, 3) the gains due

to Rayleigh fading (during transmission period i) of the direct link, the backhaul link and the relaying

link. Hence, we have |hj,i|2 = zj,i|h̄j|2, j = 1, 2, 3. Moreover, these channel fading gains at different links

during the same transmission period are assumed to be independent and identically distributed (i.i.d).

Finally, the destination is assumed to apply maximal ratio combining (MRC) where the combined

channel gain is given by |h1,i|2 + |h3,i|2. Thus, the received signal-to-noise ratio (SNR) at the relay and

the received SNR at the destination in transmission period i under maximum ratio combining are given

by γ2,i =
|h2,i|2ptx

σ2 and γMRC,i =
(|h1,i|2+|h3,i|2)ptx

σ2 .

B. Blocklength-Limited Performance of Single-Hop Transmission Scenario with Perfect CSI (at the source)

For the real additive white Gaussian noise (AWGN) channel, [8, Theorem 54] derives an accurate

approximation of the coding rate of a single-hop transmission system. With blocklength m, block error

probability ε and SNR γ, the coding rate (in bits per channel use) is given by: r ≈ 1
2
log2 (1 + γ) −√

Vreal
m
Q−1 (ε), where Q−1(·) is the inverse Q-function, and as usual, the Q-function is given by Q (w) =∫∞

w
1√
2π
e−t

2/2dt. In addition, Vreal is the channel dispersion of a real Gaussian channel which is given by

Vreal = γ
2

γ+2

(1+γ)2 (log2e)
2.

Under a quasi-static fading channel model, each channel state is assumed to be static during a transmis-

sion period. Therefore, in each transmission period a quasi-static fading channel with fading coefficient

h can be viewed as an AWGN channel with channel gain |h|2. Therefore, the above result with a real

AWGN channel can be reasonably extended to a complex quasi-static fading channel model in [10]–[14]:

with a channel gain |h|2 the coding rate of a transmission period (in bits per channel use) is given by:

r = R(|h|2, ε,m) ≈ C(|h|2)−
√
Vcomp

m
Q−1 (ε) , (4)

where C (|h|2) is the Shannon capacity function of a complex channel with gain |h|2: C(|h|2)=log2

(
1 + |h|2ptx

σ2

)
.

In addition, the channel dispersion of a complex Gaussian channel is twice the one of a real Gaussian

channel: Vcomp = 2Vreal = γ γ+2

(1+γ)2 (log2e)
2 =

(
1− 1

(1+γ)2

)
(log2e)

2 =
(

1− 2−2C(|h|2)
)

(log2e)
2.
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Then, for a single hop transmission of a transmission period of quasi-static fading channel, with

blocklength m and coding rate r, the decoding (block) error probability at the receiver is given by:

ε = P(|h|2, r,m) ≈ Q

(
C(|h|2)− r√
Vcomp/m

)
. (5)

Considering the channel fading, the expected/average error probability over channel fading is given

by [10]:

E
z

[ε] = E
z

[
P(|h|2, r,m)

]
≈ E

z

[
Q

(
C(|h|2)− r√
Vcomp/m

)]
, (6)

where E
z

[∗] is the expectation over the distribution of channel fading gain z.

In the remainder of the paper, we investigate the blocklength-limited performance of relaying under

quasi-static fading channels by applying the above approximations. As these approximations have been

shown to be very tight for sufficiently large value of m [8]–[10], for simplicity we will assume them to

be equal in our analysis and numerical evaluation where we consider sufficiently large value of m at each

hop of relaying.

III. PHYSICAL-LAYER PERFORMANCE OF RELAYING WITH AVERAGE CSI

With only average CSI, if the source determines the coding rate directly based on it, this likely results

in that |hj,i|2, the instantaneous channel gain at transmission period i, is lower than the average which

is |h̄j|2. And this leads to a significant error probability. Therefore, we propose the source to choose a

relatively lower coding rate which is obtained by the weighted average channel gains η|h̄j|2 (j = 1, 2, 3),

where η is a weight factor. In addition, we assume that 0 < η ≤ ẑ, where ẑ is the median of z. For

link j, with probability 0.5 value η is lower than the channel fading gain zj , i.e., Pr{η < zj} ≤ 0.5.

Hence, although the instantaneous channel gain zj|h̄j|2 is still possible to be lower than the weighted one

η|h̄j|2, the probability of this becomes much lower when η < ẑ and is bounded by 0.5, i.e., Pr{zj|h̄j|2 <

η|h̄j|2} = Pr{η < zj} ≤ 0.52.

Recall that we assume MRC to be applied at the destination. Hence, the coding rates at different hops

of relaying are required to be the same. This coding rate r is determined by the source based on the

weighted average CSI according to (4). As the overall performance of the considered two-hop relaying

2The setup (letting ẑ be the upper limit of η) facilitates the proof of Theorem 1 and Theorem 2. In addition, in practice it is unreasonable
to choose a coding rate which likely exceeds the Shannon limit with a probability higher than 0.5. Our setup just reduces this probability
and bounds it by 0.5. Hence, this setup is reasonable. Moreover, we will also show in the simulation that this setup is not impacting the
system operation/optimization as the optimal value of η is about 0.2 which is much lower than ẑ ≈ 0.7 (Rayleigh channels).
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system is actually mainly subject to the bottleneck link which is either the backhaul link or the combined

link, the coding rate is determined by r = R(η ·min
{
|h̄2|2, |h̄1|2 + |h̄3|2

}
, ε◦,m), where ε◦ is a constant

error probability and has a value of practical interest. According to (4), r is strictly increasing in the

weight factor η. In other words, a big η means a high expectation on the channel quality and results in a

high coding rate.

Once the coding rate r is determined, it will not be changed during transmission periods. In other

words, from one transmission period to the next the coding rate is fixed and therefore error probabilities

of different links of relaying vary along with the channel fading. Regarding the overall error of relaying,

in this work we treat the decoding error at the destination based on the combined channel gain as the

overall error. Although it is theoretically possible that an error occurs in the two-hop relaying though the

direct transmission (in the broadcasting phase) is correct, the probability of this is negligible as on the

one hand we mainly consider error probabilities of practical interest (which means that the overall error

probability of relaying is not significant) and on the other hand we assume the direct link to be much

weaker than the backhaul link as well as the relaying link. Therefore, the overall error probability of

relaying during transmission period i is given by:

εR,i = ε2,i + (1− ε2,i) · εMRC,i, (7)

where εMRC,i = P(|h1,i|2 + |h3,i|2, r,m) and ε2,i = P(|h2,i|2, r,m).

Under the studied two-hop relaying scenario where the coding rate at each hop is r, the (source-to-

destination) equivalent coding rate is actually r/2. Therefore, the expected BL-throughput of relaying

during transmission period i (the number of correctly received bits at the destination per channel use) is

given by:

CBL,i = r(1− εR,i)/2. (8)

Then, we have the (average) BL-throughput of relaying over time, which is actually the expectation

value of CBL,i over the transmission periods:

CBL = E
i

[CBL,i] = r(1− E
i

[εR,i])/2. (9)

Hence, the major challenge for determining CBL is to obtain the expectation of the overall error

probability over the transmission periods, which is actually equal to the expectation over channel fading.
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Recall that all the channels are independent from each other, hence the expected value of the overall error

probability of relaying is further given by:

E
i

[εR,i]= E
z1,z2,z3

[εR]=E
z2

[ε2] +(1− E
z2

[ε2]) E
z1,z3

[εMRC] , (10)

where E
z2

[ε2] and E
z1,z3

[εMRC] are the expectation values (over fading) of error probabilities of the backhaul

link and the combined link. Based on (6), they are given by:

E
z2

[ε2] =

∫ ∞
0

e−z2ε2dz2

=

∫ ∞
0

P(z2|h̄2|2, r,m)e−z2dz2

=
1√
2π

∫ ∞
0

∫ ∞
√
mw(z2)

e−
t2+2z2

2 dtdz2,

(11)

E
z1,z3

[εMRC]=

∫ ∞
0

∫ ∞
0

εMRCe
−z1−z3dz1dz3

=
1√
2π

∫ ∞
0

∫ ∞
0

P(z1|h̄1|2+z3|h̄3|2, r,m)e−z1−z3dz1dz3

=
1√
2π

∫ ∞
0

∫ ∞
0

∫ ∞
√
mw(z1,z3)

e−
t2+2z1+2z3

2 dtdz1dz3,

(12)

where w (z2) = C(z2|h̄2|2)−r√
1
m(1−2−2C(z2|h̄2|2))log2e

and w(z1, z3) = C(z1|h̄1|2+z3|h̄3|2)−r√
1
m(1−2−2C(z1|h̄1|2+z3|h̄3|2))log2e

.

So far, we derived the BL-throughput of relaying under the studied system. We then have the following

theorem regarding the BL-throughput.

Theorem 1 Under a relaying scenario with quasi-static Rayleigh channels where only the average CSI

is available at the source, the BL-throughput is concave in the coding rate.

Proof: See Appendix A.

Recall that the coding rate chosen by the source is strictly increasing in the weight factor η. Combined

with Theorem 1, we have an important corollary of Theorem 1:

Corollary 1 Consider a relaying scenario with quasi-static Rayleigh channels while only the average CSI

is available at the source. If the source determines the coding rate according to the weighted average

CSI, the BL-throughput is quasi-concave in the weight factor η.

Proof: See Appendix B.

Therefore, only with the average CSI there is a unique optimal value of η, which maximizes the

BL-throughput of relaying in the finite blocklength regime.
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IV. LINK-LAYER PERFORMANCE OF RELAYING WITH AVERAGE CSI

In this section, we study the Link-layer performance of relaying based on the effective capacity, which

is a well-known performance model that accounts for transmission and queuing effects in (wireless)

networks [17]. We first briefly review the effective capacity model and extend the expression of the

maximum sustainable data rate into a blocklength-limited relaying scenario. Subsequently, we derive the

MSDR of the studied relaying system in the finite blocklength regime based on the model.

A. Maximum Sustainable Data Rate

The effective capacity characterizes the (maximum) arrival rate of a flow to a queuing system and

relates the stochastic characterization of the service of the queuing system to the queue-length or delay

constraints of the flow. In the finite blocklength regime, decoding errors may occur. If a decoding error

occurs in transmission period i, the service process increment (effectively transmitted information) si of

the two-frame relaying equals zero. On the contrary, if no error occurs at frame i, the service process

increment equals si = m · r, where r is the coding rate (in bits per channel use) employed over a block

of m symbols in each hop/frame of relaying. At period i, the cumulative service process is Si =
∑i

n=0 sn.

Assume that the queue is stable as the average service rate is larger than the average arrival rate. Hence, the

random queue length Qi at period i converges to the steady-state random queue length Q. To characterize

the long-term statistics Pr {Q} of the queue length, the framework of the effective capacity gives us the

following upper bound:

Pr {Q > x} ≤ K · e−θ·x, (13)

where K is the probability that the queue is non-empty and θ is the so called QoS exponent. Based

on [20], for a constant rate source with r bits per two-hop transmission period, the exponent θ has to

fulfill the following constraint:

r < −Λ (−θ)/θ. (14)

Λ (θ) is the log-moment generating function of the cumulative service process Si defined as:

Λ (θ) = lim
i→∞

1

i
log E

[
eθ·(Si−S0)

]
. (15)

The ratio −Λ (−θ) /θ is called the effective capacity. Denote by Di the random queuing delay of the head-

of-line bit during period i. If the constant arrival rate at the source is r, with a queue length of Q = q,
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a current delay of the head-of-line bit is given by D = q/r. This yields the following approximation for

the steady-state delay distribution which is based on Equation (13):

Pr {D > d} ≤ K · e−θ·r·d. (16)

If the service process si can be assumed to be independent and identically distributed (i.i.d.), a convenient

simplification is to obtain the log-moment generating function via the central limit theorem. Then, the

effective capacity can be obtained by [21]3:

−Λ (−θ)
θ

=− lim
i→∞

1

i · θ
log E

[
e−θ·

∑i
1 si
]

=E
i

[si]−
θ

2
Var
i

[si] . (17)

Therefore, the queuing performance of the system is determined by the mean and the variance of the

random increment of the service process si. Combining (14) and (16), the maximum arrival rate at the

source RMS in (bits per transmission period) that can be supported by the random service process is

obtained, which has been first proposed by [22]:
E
i
[si]

2
+ 1

2

√
(E
i

[si])
2 + 2 ln(Pd)

d
· Var

i
[si]. In the formula,

{d, Pd} is QoS requirement pair of the service, where in [22] d is the delay constraint with transmission

period as unit and Pd is the constraint of delay violation probability.

The above maximum source rate is the so-called maximum sustainable data rate (MSDR) and in this

work we refer to MSDR as the metric of link-layer performance. Now, we extend the above MSDR

into the studied relaying system in the finite blocklength regime. First, we redefine the unit of the delay

constraint d and let d be in symbols. Recall that in the studied system the length of each (two-hop relaying)

transmission period is 2m. Therefore, the delay constraint is d/2m times of a transmission period. Then,

the MSDR (bits per channel use) of the studied two-hop relaying system is given by:

RMS≈
E
i

[si]

4m
+

1

4m

√(
E
i

[si]

)2

+
4m ln (Pd)

d
·Var

i
[si]. (18)

Based on (18), the major challenge for determining the MSDR RMS is to obtain the mean and variance

of the service process increment of the studied relaying system.

B. Mean and Variance of the Service Process Increment

Recall that the service process increment of a transmission period is either zero or rm. In other words, it

is Bernoulli-distributed. Moreover, the probability of the error event of this Bernoulli distribution is actually

3It should be mentioned that (17) holds for i.i.d. si but is just an approximation for general (non-i.i.d.) si
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the expected overall error probability of relaying which was given in the previous section by (10). Based

on the characteristic of the Bernoulli distribution, we immediately have the mean and variance of service

process increments:

E
i

[si] = rm · (1− E
z1,z2,z3

[εR]), (19)

Var
i

[si] = r2m2
E

z1,z2,z3
[εR] · (1− E

z1,z2,z3
[εR]). (20)

Substituting (19) and (20) into (18), we have

RMS =

r(1− E
z1,z2,z3

[εR])

4
+
r

4

√
(1− E

z1,z2,z3
[εR])2+

4m ln (Pd)

d
E

z1,z2,z3
[εR] (1− E

z1,z2,z3
[εR]). (21)

Obviously, the performance of MSDR RMS is subject to the coding rate r, as E
i

[εR,i] is also a function

of r. In fact, the following theorem holds regarding the relationship between MSDR and the coding rate.

Theorem 2 Under a relaying scenario with quasi-static Rayleigh channels where only the average CSI

is available at the source, the MSDR is concave in the coding rate r.

Proof: See Appendix D.

Similar to Theorem 1, Theorem 2 has the following corollary:

Corollary 2 Consider a relaying scenario with quasi-static Rayleigh channels while only the average

CSI is available at the source. If the source determines the coding rate according to the weighted average

CSI, the MSDR is quasi-concave in the weight factor η.

Proof: The proof of Corollary 2 (based on Theorem 2) is similar to the proof of Corollary 1 (based

on Theorem 1).

Hence, the link-layer performance MSDR also can be optimized by choosing an appropriate η.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we first show the appropriateness of our theoretical model. Subsequently, we evaluate

the performance of the studied relaying system (with average CSI) in comparison to direct transmission

and relaying with perfect CSI.

For the numerical results, we consider the following parameterization of the system model: First of all,

we consider the cases with blocklength m ≥ 100 (at each hop of relaying), for which the approximation

is tight enough4. In addition, the codewords length of each link is set to be the same as the blocklength.

4The choice of m ≥ 100 as the minimum possible length is motivated by [10, Fig. 2] where the relative difference of the approximate
and the exact achievable rates is less than 2% for the cases with m ≥ 100.
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Secondly, we consider an outdoor urban scenario and the distances of the backhaul, relaying and direct

links are set to 200 m, 200 m and 360 m. Thirdly, we set the transmit power ptx equal to 30 dBm

and noise power to -90 dBm, respectively. In addition, we utilize the well-known COST [23] model for

calculating the path-loss while the center frequency is set to equal 2 GHz. Regarding the channel, we

only consider quasi-static channel model in the simulation. Hence, the numerical results for all validations

and evaluations are based on the average/ergodic performance over the random channel fading. Moreover,

as we consider the link-layer performance, in the simulation the QoS constraints {delay, delay violation

probability} are set to {104 symbols, 10−2}. Finally, to observe the relaying performance we mainly vary

the following parameters in the simulation: Blocklength and weight factor η.

A. Appropriateness of our theoretical model

In Figure 2 we show the relationship between the relaying performance and the coding rate. We plot

the related (ergodic) Shannon capacity of relaying as a reference. As shown in the figure, the Shannon

capacity is not influenced by the coding rate. More importantly, it is shown that the BL-throughput and

the MSDR are concave in the coding rate, which matches Theorem 1 and 2. During the low coding

rate region, both the BL-throughput and the MSDR increase approximately linearly as the coding rate

increases. This is due to the fact that errors hardly occur with a low coding rate. Hence, the bottleneck of

the performance is the coding rate. However, as the coding rate continues increasing, the error probability

becomes more and more significant. As a result, the error probability then becomes the major limit of

the system performance. Therefore, both the BL-throughput and the MSDR decrease during the higher

coding rate region.

Figure 3 validates Corollary 1 and 2 that both the BL-throughput and the MSDR are quasi-concave

in the weight factor η. Hence, the weight factor introduces a good tradeoff between the coding rate and

the error probability to the studied relaying system (only with average CSI at the source). Based on

this tradeoff, both the physical-layer performance and the link-layer performance of the system can be

optimized. Moreover, it can also be observed from Figure 3 that the optimal values of the weight factor

for maximizing the BL-throughput and for maximizing the MSDR are not the same. Moreover, we also

find in the simulation (not shown here) that the optimal η for maximizing the MSDR is subject to the

QoS constraints. In particular, the stricter the constraints are the smaller the optimal η is. Hence, the

parameterization of the weight factor η for a QoS-support system and a non-QoS-support system should

be treated differently. These are important guidelines for the design of the studied relaying system.
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Fig. 2. The performance of the studied relaying system (average CSI at the source).
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Fig. 3. The relaying performance versus the weight factor.

In Figure 4, we provide intuitive parallel sub-figures to show how the weight factor introduces the

tradeoff between the coding rate and the error probability and further influences the BL-throughput and

the MSDR. As shown in the figure, by increasing the weight factor the coding rate increases as well as the

error probability. In particular, the coding rate increases rapidly at the beginning but slowly later on. At the

same time, the error probability increases approximately linearly. As a result, the BL-throughput/MSDR

first increases and then deceases. In other words, they are quasi-concave in the weight factor η.
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Fig. 4. How the weight factor introduces tradeoff between error probability and coding rate and further influences the BL-throughput and
the MSDR? In the simulation, the blocklength at each hop of relaying is 500 symbols.

B. Evaluation

So far, we have shown the appropriateness of our Theorems and corollaries. In the following, we further

evaluate the studied relaying system. In the evaluation, the performance under the perfect CSI scenario

is considered as a contrast. In particular, a result of the (average) BL-throughput with the perfect CSI

is obtained by maximizing the instantaneous BL-throughput5 for each transmission period based on the

perfect CSI.

1) Under average CSI scenario: relaying performance vs. blocklength: We first show the relationship

between the performance of the studied relaying system and the blocklength in Figure 5. The figure

shows that the BL-throughput of the studied relaying system is slightly increasing in the blocklength

while the MSDR is significantly decreasing in the blocklength. The explanation is as follows. On one

hand, based on (5) and (4) both error probability and coding rate are influenced by the blocklength m.

In particular, with a fixed coding rate at each link a long blocklength leads to a low error probability

of each link. Obviously, this results in a low overall error probability of relaying and therefore a high

BL-throughput. This is the reason why the BL-throughput is slightly increasing in the blocklength. On the

other hand, a long blocklength means that a single transmission (i.e., two-hop relaying) costs a long time.

This reduces the number of allowed retransmission attempts under a given delay constraint. For example,

5In [15] we show that the BL-throughput of relaying can be maximized by choosing an appropriate coding rate r (based on the perfect
CSI) for AWGN channels. This also holds for maximizing the instantaneous BL-throughput at each transmission period under the quasi-static
channels.
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Fig. 5. The relaying performance versus blocklength.

consider a relaying system where the blocklength of each hop of relaying is 500 symbols (two-hop relaying

transmission period is 103 symbols). To support a service with a delay constraint d = 104 symbols, the

maximal number of transmission attempts (including an initial transmission and retransmissions), which

not violates the delay constraint, is 10 times. This number would be 5 if the blocklength is doubled.

In other words, a long blocklength reduces the flexibility of a QoS-support system due to limiting the

number of transmission attempts. At the same time, the gain from increasing blocklength becomes tiny

as the blocklength increases (e.g., even ragarding the physical-layer performance, the BL-throughput is

approximately a constant during the long blocklength region). As a result, the MSDR reduces significantly

in the long blocklength region. For an extreme example, the MSDR is zero if the blocklength is longer

than the delay constraint.

2) Under average CSI scenario: relaying vs. direct transmission — observing the performance advan-

tage of relaying: Under the average CSI scenario, we compare the performance of the studied relaying

system with direct transmission. To make a fair comparison, we set the coding rate of direct transmission to

be equal to the equivalent coding rate of relaying. In addition, we set the blocklength of direct transmission

to be twice as large as the blocklength at each hop of relaying. Hence, the length of each transmission

period of relaying equals that of direct transmission. Under the above setup, we compare the two schemes

in Figure 6 and Figure 7 where we vary the coding rate and blocklength, respectively. Based on these

two figures, we observe that both the BL-throughput and the MSDR of relaying significantly outperform
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Fig. 6. The performance comparison between relaying (with average CSI) and direct transmission (with average CSI) while varying the
weight factor η. In the simulation, the blocklength at each hop of relaying is 500 symbols.

10
2

10
3

0

0.5

1

1.5

2

Blocklength at each hop of relaying

C
ap

ac
ity

 [b
its

/c
h.

us
e]

 

 

Shannon capacity of relaying
BL−throughput of relaying
MSDR of relaying
Shannon capacity of direct transmission
BL−throughput of direct transmission
MSDR of direct transmissionmission

Fig. 7. The performance comparison between relaying (with average CSI) and direct transmission (with average CSI) under dynamic
blocklength (η = 0.2).

direct transmission, although these two schemes have a similar Shannon capacity. In other words, under

the average CSI scenario relaying shows a significant advantage (in comparison to the direct transmission)

on the blocklength-limited performance.

3) The performance advantage of relaying: under perfect CSI scenario vs. under average CSI scenario:

The previous subsection shows the performance advantage of relaying under the average CSI scenario.

In this subsection, we compare this performance advantage under the average CSI scenario with the one
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under the perfect CSI scenario. We show the comparison in Figure 8 and Figure 9 where the weight

factor and the blocklength are varied respectively. In general, these figures show that relaying has better
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Fig. 8. The performance comparison between relaying with average CSI and relaying with perfect CSI while varying the weight factor
(η = 0.2).
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Fig. 9. The performance comparison between relaying with average CSI and relaying with perfect CSI under dynamic blocklength (η = 0.2).

blocklength-limited performance than direct transmission under both the perfect CSI scenario and the

average CSI scenario. However, we further observe that this performance advantage of relaying under

the average CSI scenario is more significant than under the perfect CSI scenario, i.e., the performance

improvement by relaying (comparing relaying with direct transmission) under the average CSI scenario

is significantly higher than the one under the perfect CSI scenario. Recall that in [15] we have shown
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that with perfect CSI relaying is more beneficial in the finite blocklength regime in comparison to in the

Shannon capacity regime. The observation from Figure 8 and Figure 9 further indicates that in the finite

blocklength regime relaying is more beneficial for the average CSI scenario in comparison to the perfect

CSI scenario. This is another important guideline for the design of blocklength-limited systems.

4) The performance loss due to a finite blocklength: under perfect CSI scenario vs. under average

CSI scenario: Finally, we compare the performance losses due to a finite blocklength under perfect

CSI scenario and under average CSI scenario. Under the perfect CSI scenario, the performance loss

due to a finite blocklength is actually the performance gap between the Shannon capacity and the BL-

throughput (with perfect CSI). On the other hand, this performance loss under the average CSI scenario is

observed by comparing the BL-throughput (with average CSI) with the outage capacity. In particular, the

outage capacity is a performance metric in the Shannon capacity regime. It is given by r (1− Prout(r)),

where Prout(r) is the outage probability. To calculate the outage capacity, the weighting CSI operation

is also considered in the simulation, i.e., the packet size is chosen based on the Shannon capacity of the

weighted CSI.
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Fig. 10. The performance comparison between relaying in the Shannon capacity regime and relaying in the finite blocklength regime
(blocklength at each hop of relaying is 500 symbols).

Under the above setup, we first show the numerical results of the comparison in Figure 10 where we

fix the blocklength and vary the weight factor. The figure shows that the performance loss due to a finite

blocklength is considerable under the perfect CSI scenario. However, we find that under the average CSI

scenario the performance loss due to a finite blocklength is negligible. In the simulation, we also observe
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that (not shown here) only with average CSI at the source the outage probability (in the Shannon capacity

regime) and the average error probability (in the finite blocklength regime) have similar performance.

The observations from Figure 10 are based on the setup that the blocklength equals m = 500 symbols.

Recall that the BL-throughput is limited by the blocklength and the performance in the Shannon capacity

regime is not influenced by the blocklength. Hence, the performance loss due to a finite blocklength should

also be subject to the blocklength. Then, we further investigate this performance loss in Figure 11 where

we vary the blocklength. Again, we observe that the performance loss under the average CSI scenario
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Fig. 11. The performance comparison between relaying in the Shannon capacity regime and relaying in the finite blocklength regime while
varying the blocklength. In the simulation, η = 0.2.

is much smaller than the one under the perfect CSI scenario. In particular, with a non-extremely short

blocklength (e.g., blocklength m > 100) the performance loss due to a finite blocklength is negligible

under the average CSI scenario.

From Figure 11 we observe that the BL-throughput of relaying with average CSI and the outage capacity

converge quickly. It should be mentioned that this is not a unique characteristic of relaying. It is studied

and observed in [10] that the speed of convergence between the BL-throughput and the outage capacity for

a non-relaying direct transmission is also fast. This motivates us to compare the speeds of convergence of

these two transmissions schemes. We show the comparison in Figure 12. From the figure, we first observe

that relaying has a slightly faster speed of convergence in comparison to direct transmission. In addition,

in general both these two schemes have quick speeds of convergence between the BL-throughput with

average CSI and the outage capacity. This observation is different from the case with perfect CSI shown in
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Fig. 12. The speed of convergence between the BL-throughput with average CSI and the outage capacity.

Figure 9 where speeds of the convergence (between the BL-throughput and the Shannon capacity) for both

relaying and direct transmission are relatively slow. More interesting, Figure 9 shows that the speed of

convergence of relaying is also faster than direct transmission under the perfect CSI scenario. Combining

Figure 9 and Figure 12, we conclude that (although halving the blocklength) relaying surprisingly has

a faster speed of convergence (between the blocklength-limited performance and the performance in the

Shannon capacity regime) in comparison to direct transmission under both the average CSI scenario and

the perfect CSI scenario. This is actually the performance advantage of relaying in the finite blocklength

regime from a perspective of the speed of convergence (to the Shanon/outage capacity).

VI. CONCLUSION

Under the finite blocklength regime, we investigated the physical-layer performance (BL-throughput)

as well as the link-layer performance (MSDR) of a relaying system with quasi-static fading channels but

only the average CSI (at the source). We proposed a simple system operation by introducing a factor based

on which we weight the average CSI and let the source determine the coding rate based on the weighted

CSI. The BL-throughput and the MSDR of the studied relaying system are investigated. Moreover, we

proved that both the BL-throughput and the MSDR are concave in the coding rate. More importantly, it

was proved that the BL-throughput and the MSDR are quasi-concave in the weight factor. In other words,

the performance of the studied system can be easily optimized based on the proposed operation.

We concluded a set of guidelines for the design of efficient relaying systems (under the finite blocklength
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regime) from numerical analysis. Firstly, under the average CSI scenario the BL-throughput of relaying

is slightly increasing in the blocklength while the effective capacity is significantly decreasing in the

blocklength. Hence, determining the blocklength is very important for the design of QoS-support relaying

systems. Secondly, the weight factor we proposed introduces a good tradeoff between the coding rate

and the error probability to the studied relaying system. Based on this tradeoff, both the physical-layer

performance and the link-layer performance of the system can be optimized. Moreover, the optimal values

of the weight factor for maximizing the BL-throughput and for maximizing the MSDR are different.

Thirdly, under the condition of having similar Shannon capacity performance relaying outperforms direct

transmission in the finite blocklength regime. This is actually the performance advantage of relaying in

the finite blocklength regime. More importantly, this performance advantage of relaying under the average

CSI scenario is more significant than under the perfect CSI scenario. In addition, the performance loss

due to a finite blocklength (i.e., the performance gap between the performance in the Shannon capacity

regime and in the finite blocklength regime) is negligible under the average CSI scenario in comparison

to the one under the perfect CSI scenario. Moreover, the speed of convergence (between the blocklength-

limited performance and the performance in the Shannon capacity regime) in relaying system is faster in

comparison to the direct transmission under both the average CSI scenario and the perfect CSI scenario.

APPENDIX A

PROOF OF THE THEOREM 1

Proof: Based on Equation (9) we immediately have
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In the following, we prove Theorem 1 by showing ∂2CBL
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<0.

According to Equation (10), we have:

∂E
i

[εR,i]

∂r
=

∂ E
z2

[ε2]

∂r

(
1− E

z1,z3
[εMRC]

)
+

∂ E
z1,z3

[εMRC]

∂r

(
1− E

z2
[ε2]

)
> 0, (24)



22

∂2E
i

[εR,i]

∂2r
=

∂2E
z2

[ε2]

∂2r

(
1− E

z1,z3
[εMRC]

)
− 2

∂ E
z2

[ε2]

∂r

∂ E
z1,z3

[εMRC]

∂r

+

∂2 E
z1,z3

[εMRC]

∂2r

(
1− E

z2
[ε2]

)
.

(25)

Hence, ∂2CBL

∂2r
< 0 if

∂2E
i
[εR,i]
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> 0.

Recall that the coding rate is determined based on ηh̄2
j (j = 1, 2, 3), where 0 < η ≤ ẑ. In other words,

the coding rate is definitely lower than the Shannon capacity of a link (either the backhaul link or the

combined link) if the fading gain of this link is higher than η. Consider for example the backhaul link

with fading z2. We have r < C(z2|h̄2|2), z2 ∈ (η,+∞) and r > C(z2|h̄2|2), z2 ∈ (0, η). Denote the integral

part in (26) as ∆ (z2) for short. Hence we have
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Moreover, the following relationship holds based on ẑ:
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⇒ We have
∂2 E

z2
[ε2]

∂2r
> 0 for the backhaul link.

Regarding the combined link, the combined channel gain is |h̄MRC|2=z1|h̄1|2 + z3|h̄3|2. Therefore, we

have:



23

+∞∫̂
z

+∞∫̂
z

√
2π(C(|h̄MRC|2)−r)e

−
m(C(|h̄MRC|

2)−r)
2(

1−2
−2C(|h̄MRC|2)

)
(log2 e)2

−z1−z3

(
1−2
−2C(|h̄MRC|2)

m

) 3
2

(log2 e)
3

dz1dz3

≥
η∫
0

η∫
0

√
2π|C(|h̄MRC|2)−r|e

−
m(C(|h̄MRC|

2)−r)
2

2

(
1−2
−2C(|h̄MRC|2)

)
(log2 e)2

−z1−z3

4

(
1−2
−2C(|h̄MRC|2)

m

) 3
2

(log2 e)
3

dz1dz3 > 0

Similarly, we have
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Then, to prove
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> 0, the following two cases are considered, which differ in the relationship

between the average channel gains of the backhaul link and the combined link are considered. The first

case is |h̄2|2 ≤ |h̄1|2 + |h̄3|2, where the average channel gain of the backhaul link is lower than the

combined link. As the fading of different links are i.i.d., under this case the instantaneous channel gain

of the backhaul link is more likely to be lower than the combined link.
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> 0 under the case |h̄2|2 ≤ |h̄1|2 + |h̄3|2.

Under the other case |h̄2|2 > |h̄1|2+|h̄3|2, it can be proved
∂2E

i
[εR,i]
∂2r

> 0 similarly (based on
∂2 E

z1,z3
[εMRC]

∂2r
> 0).

⇒ ∂2CBL

∂2r
< 0.

⇒ CBL is a strictly concave in the coding rate.
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APPENDIX B

PROOF OF THE COROLLARY 1

Proof: r is strictly increasing in η, 0 < η ≤ ẑ.

⇒ ∀ x < y, x, y ∈ (0, ẑ) and λ ∈ [0, 1], we have r|η=x < r|η=λx+(1−λ)y < r|η=x.

Based on Theorem 1, CBL is concave in r,

⇒ min
{
CBL

(
r|η=x

)
, CBL

(
r|η=y

)}
6 CBL

(
r|η=λx+(1−λ)y

)
.

⇒ CBL is quasi-concave in η, 0 < η ≤ ẑ.

APPENDIX C

PROOF OF THE THEOREM 2

Proof: Comparing (21) and (9), we have:

RMS = CBL

2
+R∗, whereR∗= r

4

√
(1− E

z1,z2,z3
[εR])2 + 4m ln(Pd)

d E
z1,z2,z3

[εR](1− E
z1,z2,z3

[εR]).

As we have proved that CBL is concave in r in Theorem 1, Theorem 2 holds if R∗ is concave, too.

Note that 4m ln(Pd)
d

is not influenced by r. It is actually a negative constant as ln (Pd) < 0. We denote

this constant by ϕ (ϕ < 0) for short. To facilitate the proof we also denote E
z1,z2,z3

[εR] by εR for short.

Then, we have:R∗ = r
4

√
(1− εR)2+ ϕεR(1− εR)= r

4

√
1 +(ϕ− 2)εR + (1− ϕ) εR

2

As R∗ is a square root function, it should be satisfied that:

(1− εR)2 + ϕεR · (1− εR) ≥ 0. (27)

εR is the expectation of the error probability over fading

⇒ 0 < εR < 1

⇒ 1− εR > 0. Combining this with (27)

⇒ 1− εR + ϕεR ≥ 0,

⇒ 1 ≥ (1− ϕ) εR.

∂R∗

∂r
= 1

4

√
1 + (ϕ− 2) εR + (1− ϕ) εR

2 + r
8

(ϕ−2)+2(1−ϕ)εR√
1+(ϕ−2)εR+(1−ϕ)εR

2

∂εR
∂r

,

∂2R∗

∂2r
= 1

8
(ϕ−2)+2(1−ϕ)ε̄R+r(1−ϕ)

((1−ε̄R)2+ϕε̄R(1−ε̄R))
1
2

+ r
16
−((ϕ−2)+2(1−ϕ)ε̄R)2

((1−ε̄R)2+ϕε̄R(1−ε̄R))
3
2

(
∂ε̄R
∂r

)2
+ r

8
(ϕ−2)+2(1−ϕ)ε̄R

((1−ε̄R)2+ϕε̄R(1−ε̄R))
1
2

∂2ε̄R
∂2r

.

As we have ϕ < 0 and 0 < εR < 1

⇒ 0 < (1− εR)2 + ϕεR(1− εR) < (1− εR)2 < 1

⇒ 0<
(
(1−εR)2+ϕεR(1− εR)

)! 3
2 <

(
(1− εR)2 + ϕεR(1 −εR)

) 1
2 < 1
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⇒ we have:

∂2R∗

∂2r
< 1

8
(ϕ−2)+2(1−ϕ)ε̄R+r(1−ϕ)

((1−ε̄R)2+ϕε̄R(1−ε̄R))
1
2

+ r
16
−((ϕ−2)+2(1−ϕ)ε̄R)2

((1−ε̄R)2+ϕε̄R(1−ε̄R))
1
2

(
∂ε̄R
∂r

)2
+ r

8
(ϕ−2)+2(1−ϕ)ε̄R

((1−ε̄R)2+ϕε̄R(1−ε̄R))
1
2

∂2ε̄R
∂2r

.

As 1 ≥ (1− ϕ) εR, we have:

∂2R∗

∂2r
<

2ϕ+2r

(
1−ϕ−ϕ2

2

(
∂ε̄R
∂r

)2
+ϕ

∂2ε̄R
∂2r

)
16((1−ε̄R)2+ϕε̄R(1−ε̄R))

1
2

.

As shown in Appendix A,
∂2E

i
[εR,i]
∂2r

> 0. In addition,
(
∂ε̄R
∂r

)2 ∼ O (m) and ∂2ε̄R
∂2r
∼ O

(
m3/2

)
. Moreover,

ϕ is a constant with reasonable value6 ϕ ∈ (−30m,−0.05m). Therefore, ∂2R∗

∂2r
< 0 holds.

Hence, RMS is concave in r.
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